在unet网络中同时加入金字塔和注意力机制,给出python代码,给出代码详细解释,不用keras
时间: 2024-03-12 18:02:34 浏览: 208
好的,以下是使用PyTorch实现同时加入金字塔和注意力机制的UNet网络的Python代码及详细解释:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1):
super(ConvBlock, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
self.bn = nn.BatchNorm2d(out_channels)
self.activation = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.activation(x)
return x
class UpConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=2, stride=2):
super(UpConvBlock, self).__init__()
self.upconv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride)
def forward(self, x):
return self.upconv(x)
class AttnBlock(nn.Module):
def __init__(self, in_channels):
super(AttnBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, in_channels // 2, kernel_size=1)
self.conv2 = nn.Conv2d(in_channels, in_channels // 2, kernel_size=1)
self.conv3 = nn.Conv2d(in_channels // 2, 1, kernel_size=1)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(x)
attn_map = torch.sigmoid(self.conv3(x1 + x2))
return attn_map
class PyramidBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(PyramidBlock, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.bn = nn.BatchNorm2d(out_channels)
self.activation = nn.ReLU(inplace=True)
self.pool = nn.AvgPool2d(kernel_size=2, stride=2)
def forward(self, x):
x1 = self.conv(x)
x2 = self.bn(x1)
x3 = self.activation(x2)
x4 = self.pool(x3)
return x1, x4
class UNet(nn.Module):
def __init__(self, in_channels=3, out_channels=1):
super(UNet, self).__init__()
self.conv1 = ConvBlock(in_channels, 64)
self.conv2 = ConvBlock(64, 128)
self.conv3 = ConvBlock(128, 256)
self.conv4 = ConvBlock(256, 512)
self.conv5 = ConvBlock(512, 1024)
self.upconv6 = UpConvBlock(1024, 512)
self.conv6 = ConvBlock(1024, 512)
self.attn6 = AttnBlock(512)
self.upconv7 = UpConvBlock(512, 256)
self.conv7 = ConvBlock(512, 256)
self.attn7 = AttnBlock(256)
self.upconv8 = UpConvBlock(256, 128)
self.conv8 = ConvBlock(256, 128)
self.attn8 = AttnBlock(128)
self.upconv9 = UpConvBlock(128, 64)
self.conv9 = ConvBlock(128, 64)
self.attn9 = AttnBlock(64)
self.conv10 = nn.Conv2d(64, out_channels, kernel_size=1)
self.pyramid1 = PyramidBlock(64, 64)
self.pyramid2 = PyramidBlock(128, 128)
self.pyramid3 = PyramidBlock(256, 256)
self.pyramid4 = PyramidBlock(512, 512)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(F.max_pool2d(x1, kernel_size=2, stride=2))
x3 = self.conv3(F.max_pool2d(x2, kernel_size=2, stride=2))
x4 = self.conv4(F.max_pool2d(x3, kernel_size=2, stride=2))
x5 = self.conv5(F.max_pool2d(x4, kernel_size=2, stride=2))
x6 = self.upconv6(x5)
x6 = torch.cat([x6, self.pyramid4(x4)[0]], dim=1)
x6 = self.conv6(x6)
attn6 = self.attn6(x6)
x6 = x6 * attn6
x6 = F.interpolate(x6, scale_factor=2, mode='bilinear', align_corners=True)
x7 = self.upconv7(x6)
x7 = torch.cat([x7, self.pyramid3(x3)[0]], dim=1)
x7 = self.conv7(x7)
attn7 = self.attn7(x7)
x7 = x7 * attn7
x7 = F.interpolate(x7, scale_factor=2, mode='bilinear', align_corners=True)
x8 = self.upconv8(x7)
x8 = torch.cat([x8, self.pyramid2(x2)[0]], dim=1)
x8 = self.conv8(x8)
attn8 = self.attn8(x8)
x8 = x8 * attn8
x8 = F.interpolate(x8, scale_factor=2, mode='bilinear', align_corners=True)
x9 = self.upconv9(x8)
x9 = torch.cat([x9, self.pyramid1(x1)[0]], dim=1)
x9 = self.conv9(x9)
attn9 = self.attn9(x9)
x9 = x9 * attn9
x10 = self.conv10(x9)
return x10
```
这个UNet网络包括了金字塔和注意力机制。其中,ConvBlock是UNet中常用的卷积块,包括一个卷积层、一个批归一化层和一个ReLU激活函数。UpConvBlock则是上采样块,使用转置卷积进行上采样。AttnBlock是注意力机制块,包括两个1x1卷积层和一个sigmoid激活函数,用于计算注意力系数。PyramidBlock是金字塔块,包含一个卷积层、一个批归一化层、一个ReLU激活函数和一个2x2平均池化层,用于计算金字塔特征。
在UNet网络中,输入图像通过5个ConvBlock进行编码,然后通过4个UpConvBlock进行解码。在解码过程中,每个解码块都将上一层的特征与对应的编码块的特征进行融合。其中,金字塔块和注意力机制块都用于增强融合特征的表达能力。最后,UNet网络输出与输入图像大小相同的预测结果。
希望这个代码和解释对你有帮助!
阅读全文