if len(solutions) != optimizer.population_size: # 随机生成一些解向量,补足不足的部分 while len(solutions) < optimizer.population_size: x = [random.randint(Min_pump_zcjj, Max_pump_zcjj), random.randint(Min_pump_bdljd, Max_pump_bdljd), random.uniform(Min_pump_bdwz, Max_pump_bdwz), random.uniform(Min_pump_skhd, Max_pump_skhd)] value = quadratic(x[0], x[1], x[2], x[3]) solutions.append((x, value)) # 计算每个个体的目标函数值,并存储在solutions列表中 optimizer.tell(solutions) # 计算当前已经优化的时间 elapsed_time = time.time() - start_time print('优化值:', value) print('X坐标:', x[0]) print('Y坐标:', x[1]) print('靶点位置:', x[2]) print('射孔厚度:', x[3])
时间: 2024-02-10 13:33:04 浏览: 192
这段代码是在补充不足数量的种群个体。当当前的解向量数量不足优化器的种群大小时,会随机生成一些解向量来补充。随机生成的解向量中包含4个参数,分别是:泵深、泵速、靶点位置和射孔厚度。随机生成的解向量也需要计算目标函数的值,并存储在solutions列表中。在每次迭代过程中,优化器都会根据目标函数的值对解向量进行排序,并计算新的种群。最后,输出当前的优化值、X坐标、Y坐标、靶点位置和射孔厚度。
相关问题
if len(solutions) != optimizer.population_size: # 随机生成一些解向量,补足不足的部分 while len(solutions) < optimizer.population_size: x = [random.randint(1, 51) for _ in range(4)] value = quadratic(x[0], x[1], x[2], x[3]) solutions.append((x, value)) # 计算每个个体的目标函数值,并存储在solutions列表中上述代码是什么意思
这段代码是一个优化算法中的部分代码,它的功能是为了保证种群大小(`population_size`)的一致性,如果当前种群中的解向量(`solutions`)数量不足种群大小,那么会随机生成一些解向量来补足不足的部分。每个解向量都由4个随机整数构成,并计算它们的目标函数值(`quadratic`函数),然后将解向量和目标函数值存储在`solutions`列表中。整个过程旨在初始化种群并准备进行优化。
while True: # 生成一个新的种群,每个个体是一个解向量 rounds += 1 solutions = [] for _ in range(max_iterations): x = optimizer.ask() x[0] = int(x[0]) x[1] = int(x[1]) if (x[0] == 51 and x[1] == 51) or (x[0] == 26 and x[1] == 26): pass else: value = quadratic(x[0], x[1], x[2], x[3]) solutions.append((x, value)) # 检查解向量个数是否等于种群大小 if len(solutions) != optimizer.population_size: while len(solutions) < optimizer.population_size: x = [random.randint(Min_pump_zcjj, Max_pump_zcjj), random.randint(Min_pump_bdljd, Max_pump_bdljd), random.uniform(Min_pump_bdwz, Max_pump_bdwz), random.uniform(Min_pump_skhd, Max_pump_skhd)] value = quadratic(x[0], x[1], x[2], x[3]) solutions.append((x, value)) # 随机生成一些解向量,补足不足的部分 optimizer.tell(solutions)
这段代码是一个使用 CMA-ES 优化器进行二次函数最小化的例子。它采用了一个基本的遗传算法的流程,不断生成新的种群,并对种群中的每个个体求解目标函数的值。然后,它把求解结果告诉优化器,优化器会根据当前的状态信息来更新种群,让下一轮迭代更加接近最优解。
具体来说,这个代码中的 `while True:` 循环表示不断进行迭代,直到达到预定的停止条件为止。在每一轮迭代中,它会生成一个新的种群,并对种群中的每个个体求解目标函数的值。然后,它通过调用 `optimizer.tell(solutions)` 方法,把求解结果告诉优化器。`solutions` 是一个列表,其中每个元素是一个元组 `(x, value)`,表示一个解向量 `x` 和对应的目标函数值 `value`。
在生成新的种群时,这个代码使用了一个 `for _ in range(max_iterations):` 循环,表示在当前的种群中进行 `max_iterations` 次迭代。在每次迭代中,它会调用 `optimizer.ask()` 方法,生成一个新的解向量 `x`。然后,它会对 `x` 进行一些预处理,例如将 `x[0]` 和 `x[1]` 强制转换为整数,以确保解向量的合法性。然后它会计算目标函数的值,并把 `(x, value)` 添加到 `solutions` 列表中。
如果当前的种群中的个体数量不足 `optimizer.population_size`,这个代码就会进入一个 `while` 循环,不断随机生成新的解向量,并计算目标函数的值,直到种群中的个体数量达到 `optimizer.population_size`。然后,它会调用 `optimizer.tell(solutions)` 方法,把求解结果告诉优化器,优化器会根据当前的状态来更新种群。
最终,这个代码会在达到预定的停止条件时停止迭代,并返回找到的最优解。
阅读全文