Python代码:处理高光谱数据进行图像分类,使用协同表示分类器
时间: 2023-12-02 15:04:52 浏览: 237
使用OpenCV在Python中进行图像处理
5星 · 资源好评率100%
好的,我可以为您提供有关Python处理高光谱数据进行图像分类的代码示例,使用协同表示分类器。
首先,我们需要导入必要的库:
```python
import numpy as np
import spectral
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.decomposition import PCA
```
然后,我们需要加载数据集。这里我使用的是Indian Pines数据集,您可以根据自己的需要选择不同的数据集。
```python
data_path = 'Indian_pines_corrected.mat'
label_path = 'Indian_pines_gt.mat'
data = spectral.io.matlab.loadmat(data_path)['indian_pines_corrected']
labels = spectral.io.matlab.loadmat(label_path)['indian_pines_gt']
```
接下来,我们需要将数据进行预处理。这里我使用了均值中心化和标准化。
```python
X = data.reshape(-1, data.shape[-1])
X = preprocessing.scale(X)
X = X.reshape(data.shape[0], data.shape[1], -1)
```
然后,我们需要将标签进行编码。这里我使用的是One-Hot编码。
```python
y = labels.reshape(-1)
n_classes = len(np.unique(y))
y = np.eye(n_classes)[y-1]
```
接着,我们需要将数据集分成训练集和测试集。
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
```
然后,我们需要进行降维。这里我使用的是PCA。
```python
pca = PCA(n_components=30)
X_train = pca.fit_transform(X_train.reshape(-1, X_train.shape[-1]))
X_test = pca.transform(X_test.reshape(-1, X_test.shape[-1]))
X_train = X_train.reshape(-1, X_train.shape[-1])
X_test = X_test.reshape(-1, X_test.shape[-1])
```
接下来,我们需要定义协同表示分类器。
```python
class SRC:
def __init__(self):
self.W = None
self.classes = None
def train(self, X, y):
self.classes = np.unique(y, axis=0)
X = X.T
G = np.dot(X.T, X)
G = G + np.eye(G.shape[0])*0.001
self.W = np.dot(np.dot(np.linalg.inv(G), X.T), y)
def predict(self, X):
X = X.T
y_hat = np.dot(self.W.T, X)
y_pred = np.zeros((X.shape[1], self.classes.shape[0]))
for i in range(X.shape[1]):
dist = np.sum(np.square(y_hat[:, i] - self.classes), axis=1)
y_pred[i] = self.classes[np.argmin(dist)]
return y_pred
```
最后,我们可以训练模型并进行预测。
```python
clf = SRC()
clf.train(X_train, y_train)
y_pred = clf.predict(X_test)
accuracy = accuracy_score(np.argmax(y_test, axis=1), np.argmax(y_pred, axis=1))
print('Accuracy:', accuracy)
```
这就是使用协同表示分类器对高光谱图像进行分类的Python代码示例。希望能对您有所帮助!
阅读全文