import os import cv2 import numpy as np def gabor_kernel(ksize, sigma, gamma, lamda, alpha, psi): """ reference https://en.wikipedia.org/wiki/Gabor_filter """ sigma_x = sigma sigma_y = sigma / gamma ymax = xmax = ksize // 2 # 9//2 xmin, ymin = -xmax, -ymax # print("xmin, ymin,xmin, ymin",xmin, ymin,ymax ,xmax) # X(第一个参数,横轴)的每一列一样, Y(第二个参数,纵轴)的每一行都一样 (y, x) = np.meshgrid(np.arange(ymin, ymax + 1), np.arange(xmin, xmax + 1)) # 生成网格点坐标矩阵 # print("y\n",y) # print("x\n",x) x_alpha = x * np.cos(alpha) + y * np.sin(alpha) y_alpha = -x * np.sin(alpha) + y * np.cos(alpha) print("x_alpha[0][0]", x_alpha[0][0], y_alpha[0][0]) exponent = np.exp(-.5 * (x_alpha ** 2 / sigma_x ** 2 + y_alpha ** 2 / sigma_y ** 2)) # print(exponent[0][0]) # print(x[0],y[0]) kernel = exponent * np.cos(2 * np.pi / lamda * x_alpha + psi) print(kernel) # print(kernel[0][0]) return kernel def gabor_filter(gray_img, ksize, sigma, gamma, lamda, psi): filters = [] for alpha in np.arange(0, np.pi, np.pi / 4): print("alpha", alpha) kern = gabor_kernel(ksize=ksize, sigma=sigma, gamma=gamma, lamda=lamda, alpha=alpha, psi=psi) filters.append(kern) gabor_img = np.zeros(gray_img.shape, dtype=np.uint8) i = 0 for kern in filters: fimg = cv2.filter2D(gray_img, ddepth=cv2.CV_8U, kernel=kern) gabor_img = cv2.max(gabor_img, fimg) i += 1 p = 1.25 gabor_img = (gabor_img - np.min(gabor_img, axis=None)) ** p _max = np.max(gabor_img, axis=None) gabor_img = gabor_img / _max print(gabor_img) gabor_img = gabor_img * 255 return gabor_img.astype(dtype=np.uint8) def main(): dir_path = '7/' files = os.listdir(dir_path) for i in files: print(i) img = cv2.imread(dir_path + "/" + i) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gabor_img = gabor_filter(img_gray, ksize=9, sigma=1, gamma=0.5, lamda=5, psi=-np.pi / 2) Img_Name = "5/gabor/" + str(i) cv2.imwrite(Img_Name, gabor_img) main()
时间: 2023-06-09 12:04:53 浏览: 164
这段代码定义了一个函数,用于生成一个Gabor滤波器核(Gabor kernel)。其中,使用了Python中的三个模块,分别是os、cv2和numpy。函数的输入参数为ksize、sigma、gamma、lamda、alpha和psi,分别表示核的大小、标准差、长宽比、波长、方向以及相位偏移。函数的实现采用了Gabor滤波器的数学公式,使用了numpy中的数组操作,最终生成了一个Gabor核。
相关问题
import cv2 import numpy as np import tkinter as tk from tkinter import * from tkinter import filedialog from PIL import ImageTk, Image import matplotlib.pyplot as plt class ImageProcessor: def __init__(self): self.image = None self.roo
这段代码是一个图像处理类的初始化函数,其中包含了一些常用的导入库和变量:
- 导入OpenCV库,用于图像处理;
- 导入NumPy库,用于数组运算;
- 导入Tkinter库,用于GUI界面;
- 导入Pillow库中的ImageTk和Image模块,用于图像的读取和显示;
- 导入matplotlib库中的pyplot模块,用于图像的绘制。
在初始化函数中,首先定义了一个self.image变量,用于存储图像数据。然后通过Tkinter库创建一个窗口,并设置窗口的大小和标题。接着调用OpenCV库中的cv2.namedWindow()函数创建一个图像窗口,并设置窗口名称。最后调用Tkinter库中的pack()函数将创建的窗口显示在屏幕上。
import cv2 import numpy as np def build_filters(): filters = [] ksize = 9 for theta in np.arange(0, np.pi, np.pi / 4): for lamda in np.arange(np.pi / 4, np.pi, np.pi / 4): kern = cv2.getGaborKernel((ksize, ksize), 1.0, theta, lamda, 0.5, 0, ktype=cv2.CV_32F) kern /= 1.5 * kern.sum() filters.append(kern) return filters def process(img, filters): accum = np.zeros_like(img) for kern in filters: fimg = cv2.filter2D(img, cv2.CV_8UC3, kern) np.maximum(accum, fimg, accum) return accum if __name__ == '__main__': img = cv2.imread("4/6.jpg", cv2.IMREAD_GRAYSCALE) filters = build_filters() res = process(img, filters) cv2.imshow("Result", res) cv2.waitKey(0) cv2.destroyAllWindows()
这段代码使用了OpenCV库中的函数实现了一个Gabor滤波器,用于图像处理。具体实现包括了生成一系列Gabor核,以及将这些核逐一应用于图像并将结果累加得到最终的输出图像。你可以在代码中指定需要处理的图像,以及Gabor核的一些参数。
阅读全文