for model in models: mesh_dir = os.path.join(model_root, model, 'textured.obj') save_dir = os.path.join(save_root, model) os.makedirs(save_dir, exist_ok=True) print('Read mesh from:', mesh_dir) mesh = o3d.io.read_triangle_mesh(mesh_dir) v = np.asarray(mesh.vertices) f = np.asarray(mesh.triangles) n = np.asarray(mesh.vertex_normals) v_poisson, n_poisson = pcu.sample_mesh_poisson_disk(v, f, n, num_samples=-1, radius=0.0002, use_geodesic_distance=True)

时间: 2024-04-28 21:22:52 浏览: 11
根据你提供的代码,这段程序的作用是读取一个OBJ格式的三角网格模型,然后对其进行Poisson磁盘采样,得到一组采样点及其法向量,并将其保存在相应的目录下。具体来说,程序分为以下几个步骤: 1. 遍历模型列表,对于每个模型执行以下操作: 2. 构造三角网格的文件路径和保存采样点的目录路径。 3. 创建保存采样点的目录。 4. 打印正在读取的三角网格的文件路径。 5. 读取三角网格模型。 6. 将三角网格的顶点坐标、面信息和顶点法向量转换为NumPy数组。 7. 调用pcu.sample_mesh_poisson_disk()函数进行Poisson磁盘采样,得到采样点坐标和法向量。 8. 将采样点及其法向量保存到相应的目录下。 循环结束后,所有模型的采样点都会被保存到相应的目录下。这些采样点可以用于后续的操作,例如点云配准等。
相关问题

代码无法运行for model in models: mesh_dir = os.path.join(model_root, model, 'textured.obj') save_dir = os.path.join(save_root, model) os.makedirs(save_dir, exist_ok=True) print('Read mesh from:', mesh_dir) mesh = o3d.io.read_triangle_mesh(mesh_dir) v = np.asarray(mesh.vertices) f = np.asarray(mesh.triangles) n = np.asarray(mesh.vertex_normals) v_poisson, n_poisson = pcu.sample_mesh_poisson_disk(v, f, n, num_samples=-1, radius=0.0002, use_geodesic_distance=True)

这段代码看起来是使用了Open3D库来进行三角网格的Poisson磁盘采样。如果在运行这段代码时出现问题,可能是因为缺少相关的库或数据文件,或者文件路径不正确等原因。以下是一些可能导致问题的原因和解决方法: 1. 缺少Open3D库。请确保已经正确安装了Open3D库,并且能够成功导入和使用。 2. 缺少三角网格模型。请确保已经正确下载和保存了需要处理的三角网格模型,并且文件路径正确。 3. 缺少依赖库。Open3D库依赖于许多其他的Python库和系统库,例如NumPy、SciPy、Pillow等。如果缺少依赖库,可能会导致程序无法正常运行。 4. 文件路径错误。请确保文件路径正确,并且文件存在。可以使用print()函数或调试器来检查文件路径是否正确。 如果以上方法无法解决问题,可以提供更多的错误信息或调试信息,以便更好地帮助你解决问题。

import jittor as jt import jrender as jr jt.flags.use_cuda = 1 # 开启GPU加速 import os import tqdm import numpy as np import imageio import argparse # 获取当前文件所在目录路径和数据目录路径 current_dir = os.path.dirname(os.path.realpath(__file__)) data_dir = os.path.join(current_dir, 'data') def main(): # 创建命令行参数解析器 parser = argparse.ArgumentParser() parser.add_argument('-i', '--filename-input', type=str, default=os.path.join(data_dir, 'obj/spot/spot_triangulated.obj')) parser.add_argument('-o', '--output-dir', type=str, default=os.path.join(data_dir, 'results/output_render')) args = parser.parse_args() # other settings camera_distance = 2.732 elevation = 30 azimuth = 0 # load from Wavefront .obj file mesh = jr.Mesh.from_obj(args.filename_input, load_texture=True, texture_res=5, texture_type='surface', dr_type='softras') # create renderer with SoftRas renderer = jr.Renderer(dr_type='softras') os.makedirs(args.output_dir, exist_ok=True) # draw object from different view loop = tqdm.tqdm(list(range(0, 360, 4))) writer = imageio.get_writer(os.path.join(args.output_dir, 'rotation.gif'), mode='I') imgs = [] from PIL import Image for num, azimuth in enumerate(loop): # rest mesh to initial state mesh.reset_() loop.set_description('Drawing rotation') renderer.transform.set_eyes_from_angles(camera_distance, elevation, azimuth) rgb = renderer.render_mesh(mesh, mode='rgb') image = rgb.numpy()[0].transpose((1, 2, 0)) writer.append_data((255*image).astype(np.uint8)) writer.close() # draw object from different sigma and gamma loop = tqdm.tqdm(list(np.arange(-4, -2, 0.2))) renderer.transform.set_eyes_from_angles(camera_distance, elevation, 45) writer = imageio.get_writer(os.path.join(args.output_dir, 'bluring.gif'), mode='I') for num, gamma_pow in enumerate(loop): # rest mesh to initial state mesh.reset_() renderer.set_gamma(10**gamma_pow) renderer.set_sigma(10**(gamma_pow - 1)) loop.set_description('Drawing blurring') images = renderer.render_mesh(mesh, mode='rgb') image = images.numpy()[0].transpose((1, 2, 0)) # [image_size, image_size, RGB] writer.append_data((255*image).astype(np.uint8)) writer.close() # save to textured obj mesh.reset_() mesh.save_obj(os.path.join(args.output_dir, 'saved_spot.obj')) if __name__ == '__main__': main()在每行代码后添加注释

# 引入所需的库 import jittor as jt import jrender as jr jt.flags.use_cuda = 1 # 开启GPU加速 import os import tqdm import numpy as np import imageio import argparse # 获取当前文件所在目录路径和数据目录路径 current_dir = os.path.dirname(os.path.realpath(__file__)) data_dir = os.path.join(current_dir, 'data') def main(): # 创建命令行参数解析器 parser = argparse.ArgumentParser() parser.add_argument('-i', '--filename-input', type=str, default=os.path.join(data_dir, 'obj/spot/spot_triangulated.obj')) # 输入文件路径 parser.add_argument('-o', '--output-dir', type=str, default=os.path.join(data_dir, 'results/output_render')) # 输出文件路径 args = parser.parse_args() # other settings camera_distance = 2.732 # 相机距离 elevation = 30 # 抬高角度 azimuth = 0 # 方位角度 # load from Wavefront .obj file mesh = jr.Mesh.from_obj(args.filename_input, load_texture=True, texture_res=5, texture_type='surface', dr_type='softras') # 从.obj文件载入模型 # create renderer with SoftRas renderer = jr.Renderer(dr_type='softras') # 创建渲染器 os.makedirs(args.output_dir, exist_ok=True) # draw object from different view loop = tqdm.tqdm(list(range(0, 360, 4))) # 视角变换循环 writer = imageio.get_writer(os.path.join(args.output_dir, 'rotation.gif'), mode='I') # 创建gif文件 imgs = [] from PIL import Image for num, azimuth in enumerate(loop): # rest mesh to initial state mesh.reset_() # 重置模型状态 loop.set_description('Drawing rotation') renderer.transform.set_eyes_from_angles(camera_distance, elevation, azimuth) # 设置相机位置和角度 rgb = renderer.render_mesh(mesh, mode='rgb') # 渲染模型 image = rgb.numpy()[0].transpose((1, 2, 0)) # 转置图片通道 writer.append_data((255*image).astype(np.uint8)) # 写入gif文件 writer.close() # draw object from different sigma and gamma loop = tqdm.tqdm(list(np.arange(-4, -2, 0.2))) # 模糊循环 renderer.transform.set_eyes_from_angles(camera_distance, elevation, 45) # 设置相机位置和角度 writer = imageio.get_writer(os.path.join(args.output_dir, 'bluring.gif'), mode='I') # 创建gif文件 for num, gamma_pow in enumerate(loop): # rest mesh to initial state mesh.reset_() # 重置模型状态 renderer.set_gamma(10**gamma_pow) # 设置gamma值 renderer.set_sigma(10**(gamma_pow - 1)) # 设置sigma值 loop.set_description('Drawing blurring') images = renderer.render_mesh(mesh, mode='rgb') # 渲染模型 image = images.numpy()[0].transpose((1, 2, 0)) # [image_size, image_size, RGB] writer.append_data((255*image).astype(np.uint8)) # 写入gif文件 writer.close() # save to textured obj mesh.reset_() # 重置模型状态 mesh.save_obj(os.path.join(args.output_dir, 'saved_spot.obj')) # 保存模型 if __name__ == '__main__': main()

相关推荐

解释这段代码import jittor as jt import jrender as jr jt.flags.use_cuda = 1 import os import tqdm import numpy as np import imageio import argparse current_dir = os.path.dirname(os.path.realpath(__file__)) data_dir = os.path.join(current_dir, 'data') def main(): parser = argparse.ArgumentParser() parser.add_argument('-i', '--filename-input', type=str, default=os.path.join(data_dir, 'obj/spot/spot_triangulated.obj')) parser.add_argument('-o', '--output-dir', type=str, default=os.path.join(data_dir, 'results/output_render')) args = parser.parse_args() # other settings camera_distance = 2.732 elevation = 30 azimuth = 0 # load from Wavefront .obj file mesh = jr.Mesh.from_obj(args.filename_input, load_texture=True, texture_res=5, texture_type='surface', dr_type='softras') # create renderer with SoftRas renderer = jr.Renderer(dr_type='softras') os.makedirs(args.output_dir, exist_ok=True) # draw object from different view loop = tqdm.tqdm(list(range(0, 360, 4))) writer = imageio.get_writer(os.path.join(args.output_dir, 'rotation.gif'), mode='I') imgs = [] from PIL import Image for num, azimuth in enumerate(loop): # rest mesh to initial state mesh.reset_() loop.set_description('Drawing rotation') renderer.transform.set_eyes_from_angles(camera_distance, elevation, azimuth) rgb = renderer.render_mesh(mesh, mode='rgb') image = rgb.numpy()[0].transpose((1, 2, 0)) writer.append_data((255*image).astype(np.uint8)) writer.close() # draw object from different sigma and gamma loop = tqdm.tqdm(list(np.arange(-4, -2, 0.2))) renderer.transform.set_eyes_from_angles(camera_distance, elevation, 45) writer = imageio.get_writer(os.path.join(args.output_dir, 'bluring.gif'), mode='I') for num, gamma_pow in enumerate(loop): # rest mesh to initial state mesh.reset_() renderer.set_gamma(10**gamma_pow) renderer.set_sigma(10**(gamma_pow - 1)) loop.set_description('Drawing blurring') images = renderer.render_mesh(mesh, mode='rgb') image = images.numpy()[0].transpose((1, 2, 0)) # [image_size, image_size, RGB] writer.append_data((255*image).astype(np.uint8)) writer.close() # save to textured obj mesh.reset_() mesh.save_obj(os.path.join(args.output_dir, 'saved_spot.obj')) if __name__ == '__main__': main()

最新推荐

recommend-type

grpcio-1.47.0-cp310-cp310-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

小程序项目源码-美容预约小程序.zip

小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序v
recommend-type

MobaXterm 工具

MobaXterm 工具
recommend-type

grpcio-1.48.0-cp37-cp37m-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

扁平风格PPT可修改ppt下载(11).zip

扁平风格PPT可修改ppt下载(11).zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。