控制stm32H750XBH6 LED灯闪烁的代码

时间: 2023-09-06 13:12:42 浏览: 33
以下是控制STM32H750XBH6开发板上LED灯闪烁的代码: ```c #include "main.h" int main(void) { HAL_Init(); // Enable clock for GPIOB __HAL_RCC_GPIOB_CLK_ENABLE(); // Configure PB0 as output GPIO_InitTypeDef gpio_init; gpio_init.Pin = GPIO_PIN_0; gpio_init.Mode = GPIO_MODE_OUTPUT_PP; gpio_init.Pull = GPIO_NOPULL; gpio_init.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOB, &gpio_init); while (1) { // Turn on LED HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_SET); // Delay HAL_Delay(500); // Turn off LED HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_RESET); // Delay HAL_Delay(500); } } ``` 该代码使用HAL库来初始化和控制GPIOB上的PB0引脚。在while循环中,LED灯将在500毫秒内闪烁。
相关问题

控制STM32H750XBH6 LED灯闪烁的代码

以下是控制STM32H750XBH6 LED灯闪烁的代码,使用的是HAL库。 首先,需要在CubeMX中配置GPIO口为输出模式,然后生成代码。 下面是代码: ``` #include "stm32h7xx_hal.h" /* 定义LED灯的GPIO口 */ #define LED_GPIO_Port GPIOB #define LED_Pin GPIO_PIN_0 /* 定义闪烁时间间隔(单位:毫秒) */ #define BLINK_INTERVAL 500 /* 定义全局变量记录LED灯状态 */ uint8_t led_status = 0; int main(void) { /* 初始化HAL库 */ HAL_Init(); /* 配置系统时钟 */ SystemClock_Config(); /* 配置LED灯的GPIO口 */ GPIO_InitTypeDef GPIO_InitStruct; GPIO_InitStruct.Pin = LED_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(LED_GPIO_Port, &GPIO_InitStruct); /* 进入主循环 */ while (1) { /* 切换LED灯状态 */ led_status ^= 1; HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, led_status); /* 延时一段时间 */ HAL_Delay(BLINK_INTERVAL); } } /* 配置系统时钟 */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 8; RCC_OscInitStruct.PLL.PLLN = 400; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 4; RCC_OscInitStruct.PLL.PLLR = 4; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK) { Error_Handler(); } } ``` 代码中使用了一个全局变量`led_status`来记录LED灯状态,初始值为0。在主循环中,先将`led_status`取反,然后使用HAL库函数`HAL_GPIO_WritePin()`将LED灯状态切换到相反的状态。 最后,使用`HAL_Delay()`函数延时一段时间,实现LED灯的闪烁。

控制STM32H750XBH6

的GPIO STM32H750XBH6是一个STM32系列的微控制器,它具有丰富的GPIO功能,可以用来控制各种外设,比如LED、LCD、摄像头、传感器等。 GPIO是通用输入输出端口的缩写,它是一种数字信号的接口,可以将数字信号转换为电信号输出到外部设备,也可以将外部设备的电信号输入到芯片内部进行处理。在STM32中,GPIO可以配置为输入模式或输出模式,也可以设置上拉或下拉电阻,以适应不同的应用场景。 以下是一个控制STM32H750XBH6 GPIO的示例代码: ```c #include "stm32h7xx.h" int main(void) { // 初始化GPIO RCC->AHB4ENR |= RCC_AHB4ENR_GPIOEEN; // 使能GPIOE时钟 GPIOE->MODER &= ~GPIO_MODER_MODE5; // 清零MODE5,设置为输出模式 GPIOE->MODER |= GPIO_MODER_MODE5_0; GPIOE->OTYPER &= ~GPIO_OTYPER_OT5; // 输出为推挽输出 GPIOE->OSPEEDR &= ~GPIO_OSPEEDER_OSPEEDR5; // 输出速度为低速 GPIOE->PUPDR &= ~GPIO_PUPDR_PUPD5; // 不使用上下拉电阻 // 控制GPIO输出高低电平 while (1) { GPIOE->BSRR = GPIO_BSRR_BS5; // 输出高电平 for (int i = 0; i < 100000; i++); // 延时 GPIOE->BSRR = GPIO_BSRR_BR5; // 输出低电平 for (int i = 0; i < 100000; i++); // 延时 } } ``` 上述代码中,将GPIOE的第5个引脚配置为输出模式,然后通过控制GPIOE->BSRR寄存器的位来控制输出高低电平,从而控制LED等外设的亮灭。需要注意的是,由于STM32H750XBH6的时钟频率较高,需要适当延时才能看到LED的闪烁效果。

相关推荐

最新推荐

recommend-type

STM32H750XBH6核心板原理图(pdf)

1、主芯片:STM32H750XBH6; 2、SDRAM:外扩2片32Mbytes SDRAM,组成32位宽,总容量64Mbytes; 3、QSPI Flash:外扩2片W25Q256,8位数据宽,总容量64Mbytes 4、6层板设计,模块尺寸大小29.5mmx32mm 5、模块内置限流...
recommend-type

STM32H750开发指南-寄存器版本_V1.01.pdf

本手册将由浅入深,带领大家学习 STM32H750 的各个功能,为您开启 STM32H750 的学习之旅。 本手册总共分为三篇: 1,硬件篇,主要介绍本手册硬件平台; 2,软件篇, 主要介绍STM32H750 常用开发软件的使用以及一些...
recommend-type

STM32H7x3和STM32H750单片机参考手册.pdf

该参考手册针对的是应用程序开发人员。它提供了关于如何使用STM32H745/55/47/57xx微控制器内存和外围设备的完整信息。...STM32H745/755和STM32H747/757行包括具有不同内存大小、包和外设的微控制器
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这