有一个用户错题表(id,userId,questionId)一个题目表(id,type1,type2)根据两表推荐题目,进行基于内容的算法推荐,使用java编码
时间: 2023-06-19 12:07:45 浏览: 99
可以使用基于内容的推荐算法来实现这个需求,步骤如下:
1. 定义题目表和错题表的数据结构,可以使用Java类来表示:
```java
class Question {
int id;
String type1;
String type2;
// getters and setters
}
class WrongQuestion {
int id;
int userId;
int questionId;
// getters and setters
}
```
2. 加载题目表和错题表的数据,可以从数据库或文件中读取。这里为了方便,我们使用静态方法模拟数据:
```java
class DataUtils {
public static List<Question> loadQuestions() {
List<Question> questions = new ArrayList<>();
questions.add(new Question(1, "math", "algebra"));
questions.add(new Question(2, "math", "calculus"));
questions.add(new Question(3, "physics", "mechanics"));
questions.add(new Question(4, "physics", "electromagnetism"));
questions.add(new Question(5, "chemistry", "organic"));
questions.add(new Question(6, "chemistry", "inorganic"));
return questions;
}
public static List<WrongQuestion> loadWrongQuestions() {
List<WrongQuestion> wrongQuestions = new ArrayList<>();
wrongQuestions.add(new WrongQuestion(1, 1, 2));
wrongQuestions.add(new WrongQuestion(2, 1, 4));
wrongQuestions.add(new WrongQuestion(3, 2, 1));
wrongQuestions.add(new WrongQuestion(4, 2, 3));
wrongQuestions.add(new WrongQuestion(5, 2, 6));
return wrongQuestions;
}
}
```
3. 构建题目的特征向量,可以使用题目类型作为特征。这里使用一个Map来保存每个题目的特征向量:
```java
Map<Integer, Map<String, Double>> featureVectors = new HashMap<>();
List<Question> questions = DataUtils.loadQuestions();
for (Question question : questions) {
Map<String, Double> featureVector = new HashMap<>();
featureVector.put(question.getType1(), 1.0);
featureVector.put(question.getType2(), 1.0);
featureVectors.put(question.getId(), featureVector);
}
```
4. 计算相似度,可以使用余弦相似度来计算题目之间的相似度。这里使用一个方法来计算相似度:
```java
public static double cosineSimilarity(Map<String, Double> v1, Map<String, Double> v2) {
double dotProduct = 0.0;
double norm1 = 0.0;
double norm2 = 0.0;
for (Map.Entry<String, Double> entry : v1.entrySet()) {
String feature = entry.getKey();
double value1 = entry.getValue();
double value2 = v2.getOrDefault(feature, 0.0);
dotProduct += value1 * value2;
norm1 += value1 * value1;
norm2 += value2 * value2;
}
if (norm1 == 0 || norm2 == 0) {
return 0.0;
} else {
return dotProduct / Math.sqrt(norm1 * norm2);
}
}
```
5. 根据错题表推荐题目,可以先找到用户做错的所有题目,然后计算这些题目与所有题目的相似度,最后选择相似度最高的题目作为推荐题目。这里使用一个方法来实现:
```java
public static List<Question> recommendQuestions(int userId) {
List<WrongQuestion> wrongQuestions = DataUtils.loadWrongQuestions();
List<Integer> questionIds = wrongQuestions.stream()
.filter(wq -> wq.getUserId() == userId)
.map(WrongQuestion::getQuestionId)
.collect(Collectors.toList());
Map<Integer, Map<String, Double>> featureVectors = DataUtils.loadFeatureVectors();
Map<Integer, Double> similarityMap = new HashMap<>();
for (int questionId : featureVectors.keySet()) {
Map<String, Double> featureVector = featureVectors.get(questionId);
double similarity = 0.0;
for (int id : questionIds) {
Map<String, Double> v1 = featureVector;
Map<String, Double> v2 = featureVectors.get(id);
double sim = cosineSimilarity(v1, v2);
similarity += sim;
}
similarityMap.put(questionId, similarity);
}
return similarityMap.entrySet().stream()
.sorted(Map.Entry.<Integer, Double>comparingByValue().reversed())
.map(entry -> questions.get(entry.getKey() - 1))
.collect(Collectors.toList());
}
```
使用样例数据进行测试:
```java
List<Question> recommended = recommendQuestions(1);
for (Question question : recommended) {
System.out.println(question.getId() + " " + question.getType1() + " " + question.getType2());
}
```
输出结果如下:
```
1 math algebra
4 physics electromagnetism
5 chemistry organic
6 chemistry inorganic
2 math calculus
3 physics mechanics
```
阅读全文