col1 = sheet1[ 'A:G' 1 col2 = sheet2[ 'A: G' ] col3 = sheet [ 'A: G' ] print (col1) lis1=[J] 112=[1] lis3=[1] for c1 in coll: for cl1 in c1: print(cl1.value) lis1.append (cl1.value) print (lis1) 为什么会取到none值
时间: 2024-03-23 17:41:53 浏览: 48
在你提供的代码中,我们无法确定变量 coll 的来源,因此无法确定为什么会取到 None 值。如果 coll 是一个来自于 Excel 表格的单元格列表,那么某些单元格可能为空。当你尝试获取空单元格的值时,就会返回 None。为了避免这种情况,可以在获取单元格值之前先对单元格进行非空检查,例如:
```
for c1 in coll:
for cl1 in c1:
if cl1.value is not None:
lis1.append(cl1.value)
```
这样就可以避免将 None 值添加到列表中。
相关问题
workbook=xlrd.open_workbook("C:\\Users\\FangYingge\\Desktop\\FP510D206_高温.xls") sheet_cali=workbook.sheet_by_index(1) # 索引表格名称 num=sheet_cali.nrows sheet_NW=workbook.sheet_by_index(0) num1=sheet_NW.nrows for row in range(2, num): if sheet_cali.cell(rowx=row, colx=0).value != "": data1=sheet_cali.row_values(row, 0, 6) else: pass for row1 in range(2, num1): if sheet_NW.cell(rowx=row1, colx=9).value != "": print(row1, sheet_NW.cell(rowx=row1, colx=9).value, "通道") data3=sheet_NW.row_values(row1, 15, 18) data2=sheet_NW.row_values(row1, 2, 9) test_lx=data2[0] print(test_lx) if test_lx == 'IL': fre=1 result=2 state=3 row1-=2 if test_lx == 'IL_Var': fre=2 result=3 state=4 row1-=2 if test_lx == 'GD': fre=3 result=4 state=5 row1-=2 如何将此段循环所得的数据保存到数据库
您可以使用Python中的数据库连接库(如MySQLdb、pymysql等)将循环中获取的数据保存到数据库中。首先,您需要在代码中导入相应的数据库连接库,并建立与数据库的连接。然后,在循环中获取到的数据处,将数据插入到数据库中。
以下是一个示例代码:
```python
import xlrd
import pymysql
# 建立与数据库的连接
conn = pymysql.connect(host='localhost', user='root', password='password', database='your_database')
cursor = conn.cursor()
# 打开Excel文件
workbook = xlrd.open_workbook("C:\\Users\\FangYingge\\Desktop\\FP510D206_高温.xls")
sheet_cali = workbook.sheet_by_index(1)
num = sheet_cali.nrows
sheet_NW = workbook.sheet_by_index(0)
num1 = sheet_NW.nrows
for row in range(2, num):
if sheet_cali.cell(rowx=row, colx=0).value != "":
data1 = sheet_cali.row_values(row, 0, 6)
# 将data1的数据插入数据库
cursor.execute("INSERT INTO your_table (column1, column2, column3, column4, column5, column6) VALUES (%s, %s, %s, %s, %s, %s)", data1)
else:
pass
for row1 in range(2, num1):
if sheet_NW.cell(rowx=row1, colx=9).value != "":
print(row1, sheet_NW.cell(rowx=row1, colx=9).value, "通道")
data3 = sheet_NW.row_values(row1, 15, 18)
data2 = sheet_NW.row_values(row1, 2, 9)
test_lx = data2[0]
print(test_lx)
if test_lx == 'IL':
fre = 1
result = 2
state = 3
row1 -= 2
if test_lx == 'IL_Var':
fre = 2
result = 3
state = 4
row1 -= 2
if test_lx == 'GD':
fre = 3
result = 4
state = 5
row1 -= 2
# 将fre、result、state等数据插入数据库
cursor.execute("INSERT INTO your_table (column7, column8, column9) VALUES (%s, %s, %s)", (fre, result, state))
# 提交事务并关闭数据库连接
conn.commit()
cursor.close()
conn.close()
```
请根据您的实际情况修改代码中的数据库连接参数、表名和列名,以及插入数据的SQL语句。注意,在插入数据时,需要根据数据类型使用相应的占位符(如%s、%d等)。
这样,循环中获取的数据就会保存到数据库中了。
错误改正:import xlrd import numpy as np wb=xlrd.open("历年总人口.xls") sheet=wb.sheet_by_index(0) col_0=sheet.col_values(0) col_1=sheet.col_values(1) col_2=sheet.col_values(2) col_4=sheet.col_values(4) year=col_0[38:] total=col_1[38:] man=col_2[38:] woman=col_4[38:] year=[int(c) for c in year] total=[int(c) for c in total] man=[int(c) for c in man] woman=[int(c) for c in woman] arr=np.array(year).reshape(m,1) arr=np.insert(arr,1,values=total,axis=1) arr=np.insert(arr,1,values=man,axis=1) arr=np.insert(arr,1,values=woman,axis=1) file='历年总人口.csv' np.savetxt(file,arr,fmt='%i',delimiter=',',comments='',header='年份,年末总人口,男性人口,女性人口') x=np.loadtxt(file,dtype=np.int,,delimiter=',',skiprows=1) print(x)
import xlrd
import numpy as np
wb = xlrd.open_workbook("历年总人口.xls")
sheet = wb.sheet_by_index(0)
col_0 = sheet.col_values(0)[38:]
col_1 = sheet.col_values(1)[38:]
col_2 = sheet.col_values(2)[38:]
col_4 = sheet.col_values(4)[38:]
year = [int(c) for c in col_0]
total = [int(c) for c in col_1]
man = [int(c) for c in col_2]
woman = [int(c) for c in col_4]
m = len(year)
arr = np.array(year).reshape(m,1)
arr = np.insert(arr,1,values=total,axis=1)
arr = np.insert(arr,1,values=man,axis=1)
arr = np.insert(arr,1,values=woman,axis=1)
file='历年总人口.csv'
np.savetxt(file,arr,fmt='%i',delimiter=',',comments='',header='年份,年末总人口,男性人口,女性人口')
x = np.loadtxt(file,dtype=np.int,delimiter=',',skiprows=1)
print(x)
阅读全文