请帮我写一个水准网间接平差的c++代码
时间: 2024-03-24 20:40:54 浏览: 66
以下是一个简单的水准网间接平差的C++代码,仅供参考:
```
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
// 定义一个结构体表示测站坐标和高程
struct Station {
double x;
double y;
double z;
};
// 定义一个结构体表示测站之间的连接关系和观测量
struct Observation {
int from;
int to;
double height_diff; // 水准高差
double horiz_angle; // 水平角
double azimuth; // 方位角
};
// 定义一个函数,根据观测量计算各测站的相对坐标和高程差
vector<Station> indirectAdjustment(const vector<Station>& stations, const vector<Observation>& observations) {
int n = stations.size();
vector<vector<double>> A(3 * (n - 1), vector<double>(3 * n, 0)); // 系数矩阵
vector<double> b(3 * (n - 1), 0); // 常数向量
// 构建系数矩阵和常数向量
for (int i = 0; i < observations.size(); i++) {
int from = observations[i].from;
int to = observations[i].to;
double height_diff = observations[i].height_diff;
double horiz_angle = observations[i].horiz_angle;
double azimuth = observations[i].azimuth;
double cos_h = cos(horiz_angle);
double sin_h = sin(horiz_angle);
double cos_a = cos(azimuth);
double sin_a = sin(azimuth);
// 水准高差方程
A[3 * i][3 * from] = -1;
A[3 * i][3 * to] = 1;
b[3 * i] = height_diff;
// 坐标方程
A[3 * i + 1][3 * from] = -cos_h * sin_a;
A[3 * i + 1][3 * from + 1] = -cos_h * cos_a;
A[3 * i + 1][3 * from + 2] = sin_h;
A[3 * i + 1][3 * to] = cos_h * sin_a;
A[3 * i + 1][3 * to + 1] = cos_h * cos_a;
A[3 * i + 1][3 * to + 2] = -sin_h;
// 高程方程
A[3 * i + 2][3 * from + 2] = -1;
A[3 * i + 2][3 * to + 2] = 1;
b[3 * i + 2] = stations[from].z - stations[to].z;
}
// 求解方程 Ax=b
vector<vector<double>> AtA(3 * n, vector<double>(3 * n, 0)); // 系数矩阵的转置矩阵乘以系数矩阵
vector<double> Atb(3 * n, 0); // 系数矩阵的转置矩阵乘以常数向量
for (int i = 0; i < 3 * (n - 1); i++) {
for (int j = 0; j < 3 * n; j++) {
AtA[j][i] = A[i][j];
}
Atb[i] = b[i];
}
for (int i = 0; i < 3 * n; i++) {
for (int j = 0; j < 3 * n; j++) {
for (int k = 0; k < 3 * (n - 1); k++) {
AtA[i][j] += A[k][i] * A[k][j];
}
}
}
// 利用高斯消元法求解方程
vector<double> x(3 * n, 0);
for (int i = 0; i < 3 * n - 1; i++) {
// 消元
for (int j = i + 1; j < 3 * n; j++) {
double f = AtA[j][i] / AtA[i][i];
Atb[j] -= f * Atb[i];
for (int k = i; k < 3 * n; k++) {
AtA[j][k] -= f * AtA[i][k];
}
}
}
// 回代
for (int i = 3 * n - 1; i >= 0; i--) {
double sum = 0;
for (int j = i; j < 3 * n; j++) {
sum += AtA[i][j] * x[j];
}
x[i] = (Atb[i] - sum) / AtA[i][i];
}
// 将计算结果转换为测站坐标和高程
vector<Station> result(n);
for (int i = 0; i < n; i++) {
result[i].x = x[3 * i];
result[i].y = x[3 * i + 1];
result[i].z = x[3 * i + 2] + stations[i].z;
}
return result;
}
// 测试代码
int main() {
// 定义一组测试数据
vector<Station> stations{{0, 0, 100}, {100, 0, 0}, {0, 100, 0}, {100, 100, 100}};
vector<Observation> observations{{0, 1, -100, 0, 0}, {0, 2, -100, 0, 90}, {1, 3, -100, 45, 45}, {2, 3, -100, -45, 135}};
// 调用间接平差函数计算坐标和高程
vector<Station> result = indirectAdjustment(stations, observations);
// 输出结果
for (int i = 0; i < result.size(); i++) {
cout << "Station " << i << ": (" << result[i].x << ", " << result[i].y << ", " << result[i].z << ")" << endl;
}
return 0;
}
```
需要注意的是,这只是一个简单的实现,没有进行误差分析和精度控制。如果需要更高的精度和可靠性,还需要进行更多的优化和改进。
阅读全文