循环日程安排问题 分数 10 作者 王东 单位 贵州师范学院 用分治法求解循环日程安排问题。设有n=2 k 个选手要进行网球循环赛,要求设计一个满足以下要求的比赛日程表: (1)每个选手必须与其他n-1个选手各赛一次。 (2)每个选手一天只能赛一次。 (3)循环赛在n-1天之内结束
时间: 2024-04-25 19:27:22 浏览: 197
循环日程安排问题是一个经典的组合优化问题,可以使用分治法来求解。具体的解决方案如下:
1. 如果选手数目n为1,那么日程表为空。
2. 如果选手数目n为2,那么日程表为:
第一天:1 vs 2
第二天:2 vs 1
3. 如果选手数目n为偶数,那么分为两组,分别进行比赛。每组选手数目为n/2,比赛天数为T(n/2)。然后构造一个新的选手,将它与每组的第一个选手进行比赛,比赛天数为n/2。这样总共需要T(n/2) + n/2天。然后将这个新选手剔除,对剩下的选手进行递归处理,直到选手数目为2。
4. 如果选手数目n为奇数,那么先将一个选手剔除,对剩下的选手进行递归处理,得到一个日程表。然后将这个剔除的选手与其他选手轮流比赛,比赛天数为n-1。这样总共需要T((n-1)/2) + n-1天。
通过分治法,可以在O(nlogn)的时间内求解循环日程安排问题。
相关问题
求解逆序数问题(分治法) 分数 6 作者 王东 单位 贵州师范学院 设a1, a2,…, an是
求解逆序数问题可以使用分治法,主要步骤如下:
1. 将问题分解为若干子问题:将序列a1, a2, ..., an一分为二,得到两个子序列a1, a2, ..., am和am+1, am+2, ..., an,其中m为序列长度的一半。
2. 求解子问题:分别求解两个子序列的逆序数,可以通过递归调用求解的方法来实现。
3. 合并子问题的解得到原问题的解:将两个子序列的逆序数相加,再加上两个子序列之间的逆序数,即为原序列的逆序数。
具体实现时,可以定义一个函数CountInverse(sequence)来求解某个序列的逆序数。在该函数中,首先判断序列长度是否小于等于1,如果是,则返回0;如果不是,则进行分治处理。
在分治处理中,首先将序列一分为二,然后递归调用CountInverse函数求解两个子序列的逆序数。之后,统计两个子序列之间的逆序数,即将第一个子序列的所有元素与第二个子序列中的每个元素进行比较,如果第一个子序列中的元素大于第二个子序列中的元素,则逆序数加一。
最后,返回两个子序列的逆序数之和以及两个子序列之间的逆序数,即为原序列的逆序数。
使用分治法求解逆序数问题可以有效地减少计算量,提高效率。该方法的时间复杂度为O(nlogn),其中n为序列的长度。
6-3 求解逆序数问题(分治法)分数 20作者 王东单位 贵州师范学院设a1, a2,…, an是
分治法是一种解决问题的算法思想,可以用来求解逆序数问题。逆序数问题即给定一个序列a1, a2,…, an,求其中的逆序数个数,即有多少对元素a[i]和a[j],满足i < j但是ai > aj。
分治法的基本思想是将问题划分为更小的子问题来解决,然后将子问题的解合并起来得到原问题的解。
对于逆序数问题,我们可以采用分治法的思想来解决。具体步骤如下:
1. 将原序列划分为两个子序列,分别求解每个子序列中的逆序数个数。
2. 将两个子序列的逆序数个数进行合并,得到原序列的逆序数个数。
3. 重复以上步骤,直至将序列划分为单个元素。
4. 返回最终的逆序数个数。
具体的实现可以采用递归的方式,先将序列划分为两个子序列,然后对每个子序列进行递归调用,得到子序列的逆序数个数。然后将两个子序列的逆序数个数进行合并,得到原序列的逆序数个数。
递归调用的结束条件是当划分的子序列只包含一个元素时,直接返回0。
分治法的时间复杂度为O(nlogn),其中n为序列的长度。
通过采用分治法,我们可以高效地解决逆序数问题,提高算法的效率。分治法是解决问题的一种有效的算法思想,可以应用于各种问题的求解过程中。
阅读全文