采用HMC得到时频谱图代码
时间: 2023-07-09 15:29:28 浏览: 90
这里提供一个示例代码,用于在Python中利用HMC方法得到信号的时频谱图:
``` python
import numpy as np
import matplotlib.pyplot as plt
# 定义信号
N = 1024
t = np.linspace(0, 1, N)
f = 20
signal = np.sin(2 * np.pi * f * t)
# 分帧并进行FFT
frame_size = 64
step = 32
frames = []
for i in range(0, N - frame_size + 1, step):
frame = signal[i:i+frame_size]
frames.append(np.abs(np.fft.fft(frame)))
# 定义概率分布函数
def log_prob(x):
logp = 0
for i in range(len(frames)):
logp -= np.sum((x[i] - frames[i])**2) / (2 * sigma**2)
return logp
# 定义HMC采样函数
def hmc_sampler(log_prob, x0, n_samples, epsilon, L):
samples = [x0]
x = np.array(x0)
for i in range(n_samples):
p = np.random.randn(len(x))
H = 0.5 * np.dot(p, p) - log_prob(x)
x_new = x.copy()
p_new = p.copy()
for j in range(L):
p_new -= 0.5 * epsilon * np.gradient(log_prob(x_new))
x_new += epsilon * p_new
p_new -= 0.5 * epsilon * np.gradient(log_prob(x_new))
H_new = 0.5 * np.dot(p_new, p_new) - log_prob(x_new)
alpha = min(1, np.exp(H - H_new))
if np.random.rand() < alpha:
x = x_new
samples.append(x)
return np.array(samples)
# 设置参数并进行采样
sigma = 0.1
epsilon = 0.01
L = 10
n_samples = 1000
x0 = np.array(frames) + np.random.randn(len(frames), len(frames[0])) * sigma
samples = hmc_sampler(log_prob, x0, n_samples, epsilon, L)
# 取最后一部分采样结果并计算平均值
samples = samples[-500:]
mean = np.mean(samples, axis=0)
# 绘制时频谱图
plt.imshow(mean.T, origin='lower', aspect='auto')
plt.colorbar()
plt.show()
```
需要注意的是,这只是一个简单的示例代码,实际应用中需要根据具体情况进行调整和优化。
阅读全文