编写一个用SVM分类MNIST手写集带有batch的迭代循环的代码
时间: 2023-03-27 13:05:18 浏览: 104
可以的,以下是一个用SVM分类MNIST手写集带有batch的迭代循环的代码示例:
```python
from sklearn import svm
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import numpy as np
# 加载MNIST数据集
mnist = fetch_openml('mnist_784')
X = mnist.data.astype('float32')
y = mnist.target.astype('int32')
# 数据归一化
X /= 255.
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2, random_state=42)
# 定义SVM分类器
clf = svm.SVC(kernel='linear', C=1, gamma='auto')
# 定义batch大小和迭代次数
batch_size = 100
n_iterations = 100
# 迭代训练
for iteration in range(n_iterations):
# 随机选择batch大小的样本
indices = np.random.randint(, len(X_train), batch_size)
X_batch = X_train[indices]
y_batch = y_train[indices]
# 训练SVM分类器
clf.fit(X_batch, y_batch)
# 计算训练集和测试集的准确率
y_train_pred = clf.predict(X_train)
y_test_pred = clf.predict(X_test)
train_accuracy = accuracy_score(y_train, y_train_pred)
test_accuracy = accuracy_score(y_test, y_test_pred)
# 打印训练过程中的准确率
print("Iteration:", iteration+1, "Train accuracy:", train_accuracy, "Test accuracy:", test_accuracy)
```
希望能对你有所帮助!
阅读全文