特征点匹配好的两张图片区域生长算法的代码

时间: 2023-12-22 07:03:37 浏览: 186
以下是一个结合特征点匹配的区域生长算法的代码示例(使用Python语言和OpenCV库实现): ```python import cv2 import numpy as np # 定义一个函数用于实现特征点匹配和区域生长 def feature_matching_and_region_growing(img1, img2, seed): # 创建ORB特征检测器和描述子 orb = cv2.ORB_create() # 检测特征点和计算描述子 kp1, des1 = orb.detectAndCompute(img1, None) kp2, des2 = orb.detectAndCompute(img2, None) # 创建特征点匹配器 bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) # 进行特征点匹配 matches = bf.match(des1, des2) # 根据距离进行排序 matches = sorted(matches, key=lambda x: x.distance) # 获取匹配结果中的坐标 src_pts = np.float32([kp1[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2) dst_pts = np.float32([kp2[m.trainIdx].pt for m in matches]).reshape(-1, 1, 2) # 使用RANSAC算法进行单应性矩阵估计 M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) # 从种子点开始进行区域生长 rows, cols = img1.shape[:2] marked = np.zeros_like(img1) pts = [seed] threshold = 10 while len(pts) > 0: cur_pt = pts.pop(0) cur_pt_homogeneous = np.array([[cur_pt[0], cur_pt[1], 1]], dtype=np.float32) transformed_pt = cv2.perspectiveTransform(cur_pt_homogeneous, M)[0][0] transformed_pt = np.round(transformed_pt).astype(int) if (transformed_pt[0] >= 0 and transformed_pt[0] < cols) and (transformed_pt[1] >= 0 and transformed_pt[1] < rows): cur_value = img1[cur_pt[1], cur_pt[0]] transformed_value = img2[transformed_pt[1], transformed_pt[0]] if abs(cur_value - transformed_value) < threshold and marked[cur_pt[1], cur_pt[0]] == 0: marked[cur_pt[1], cur_pt[0]] = 255 if cur_pt[0] > 0: pts.append([cur_pt[0] - 1, cur_pt[1]]) if cur_pt[0] < cols - 1: pts.append([cur_pt[0] + 1, cur_pt[1]]) if cur_pt[1] > 0: pts.append([cur_pt[0], cur_pt[1] - 1]) if cur_pt[1] < rows - 1: pts.append([cur_pt[0], cur_pt[1] + 1]) return marked # 读入两张图像 img1 = cv2.imread('image1.jpg', 0) img2 = cv2.imread('image2.jpg', 0) # 指定一个种子像素点 seed = [50, 50] # 实现特征点匹配和区域生长 result = feature_matching_and_region_growing(img1, img2, seed) # 显示结果图像 cv2.imshow('result', result) cv2.waitKey(0) cv2.destroyAllWindows() ``` 上述代码中,`feature_matching_and_region_growing` 函数首先使用ORB特征检测器和描述子提取图像中的特征点和描述子,然后使用BFMatcher进行特征点匹配。接下来,使用RANSAC算法估计两个图像之间的单应性矩阵,将种子点通过单应性矩阵映射到第二张图像中。最后,在第一张图像上进行区域生长,根据像素点的灰度值差异判断是否需要生长,并将满足条件的像素点加入到生长列表中。最终返回标记图像。
阅读全文

相关推荐

大家在看

recommend-type

RK eMMC Support List

RK eMMC Support List
recommend-type

UD18415B_海康威视信息发布终端_快速入门指南_V1.1_20200302.pdf

仅供学习方便使用,海康威视信息发布盒配置教程
recommend-type

qt mpi程序设计

qt中使用mpi进行程序设计,以pi的计算来讲解如何使用mpi进行并行程序开发
recommend-type

考研计算机408历年真题及答案pdf汇总来了 计算机考研 计算机408考研 计算机历年真题+解析09-23年

408计算机学科专业基础综合考研历年真题试卷与参考答案 真的很全!2009-2023计算机408历年真题及答案解析汇总(pdf 2009-2023计算机考研408历年真题pdf电子版及解析 2023考研408计算机真题全解 专业408历年算题大全(2009~2023年) 考研计算机408历年真题及答案pdf汇总来了 计算机考研 计算机408考研 计算机历年真题+解析09-23年 408计算机学科专业基础综合考研历年真题试卷与参考答案 真的很全!2009-2023计算机408历年真题及答案解析汇总(pdf 2009-2023计算机考研408历年真题pdf电子版及解析 2023考研408计算机真题全解 专业408历年算题大全(2009~2023年) 考研计算机408历年真题及答案pdf汇总来了 计算机考研 计算机408考研 计算机历年真题+解析09-23年 408计算机学科专业基础综合考研历年真题试卷与参考答案 真的很全!2009-2023计算机408历年真题及答案解析汇总(pdf 2009-2023计算机考研408历年真题pdf电子版及解析 2023考研408计算机真题全解 专业4
recommend-type

应用手册 - SoftMove.pdf

ABB机器人的SoftMove手册,本手册是中文版,中文版,中文版,重要的事情说三遍,ABB原版手册是英文的,而这个手册是中文的。

最新推荐

recommend-type

C#中OpenCvSharp 通过特征点匹配图片的方法

本文主要介绍了OpenCvSharp 通过特征点匹配图片的方法,使用SIFT算法和BFMatcher进行图片matches。下面是详细的知识点: 1、SIFT算法 SIFT(Scale-Invariant Feature Transform,尺度不变特征变换)是一种常用的...
recommend-type

python实现两张图片的像素融合

本文将探讨如何使用Python实现两张图片的像素融合。这个过程涉及到对两张图片的像素级操作,通过结合它们的颜色信息来创建一个新的图像。我们将深入理解代码中的关键概念和技术。 首先,我们需要导入必要的库,如...
recommend-type

Java编程实现基于用户的协同过滤推荐算法代码示例

Java编程实现基于用户的协同过滤推荐算法代码示例 本文主要介绍了 Java 编程实现基于用户的协同过滤推荐算法代码示例。协同过滤算法是一种常见的推荐算法,它可以根据用户的行为和偏好推荐相似物品或服务。下面是该...
recommend-type

python通过BF算法实现关键词匹配的方法

**BF算法,也称为朴素字符串匹配算法,是计算机科学中用于文本处理的一种简单但效率较低的算法。在Python中,BF算法可用于实现关键词匹配,帮助我们查找一个字符串(模式串p)是否存在于另一个字符串(目标串t)中。...
recommend-type

Python使用Opencv实现图像特征检测与匹配的方法

SIFT算法会返回关键点的位置和对应的描述符,描述符可以用于匹配不同图像中的相似特征。`drawKeypoints()`函数用于在原始图像上可视化这些关键点。 特征匹配是找到两幅图像中对应特征的过程,通常使用描述符的...
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"