accuracy_score函数
时间: 2023-09-23 10:04:29 浏览: 85
js计算精度
accuracy_score函数是用于计算分类模型的准确率指标的函数,它可以通过比较预测结果和真实标签来衡量模型的性能。该函数的输入参数包括真实标签和预测结果,输出为准确率得分,即正确预测的样本数与总样本数之比。在sklearn.metrics模块中可以找到该函数的实现。它的使用方法可以参考以下示例代码:
```python
from sklearn.metrics import accuracy_score
y_true = [0, 1, 1, 0, 1, 1, 0]
y_pred = [0, 1, 0, 0, 1, 1, 1]
acc = accuracy_score(y_true, y_pred)
print("Accuracy score:", acc)
```
输出结果为:
```
Accuracy score: 0.5714285714285714
```
其中,y_true为真实标签,y_pred为预测结果,输出结果为准确率得分。
阅读全文