del checkpoint torch.cuda.empty_cache()
时间: 2023-06-19 13:06:26 浏览: 189
这两个命令是用于清除PyTorch模型训练中的内存和存储。
- `del checkpoint`用于删除Python对象checkpoint,以释放内存。在训练期间,模型会定期保存checkpoint,以便在训练意外中断时可以恢复。但是,如果不再需要这些checkpoint,可以使用`del checkpoint`命令来删除它们,以释放内存。
- `torch.cuda.empty_cache()`用于清空GPU的缓存,以释放GPU内存。在训练大型模型时,GPU内存经常会被占满,导致训练速度减慢或者程序崩溃。使用`torch.cuda.empty_cache()`命令可以清空GPU缓存,以便在需要时可以重新分配内存。
相关问题
msg = self.load_state_dict(state_dict, strict=False) logger.info('Missing keys: {}'.format(msg.missing_keys)) logger.info('Unexpected keys: {}'.format(msg.unexpected_keys)) logger.info(f"=> loaded successfully '{self.pretrained}'") del checkpoint torch.cuda.empty_cache()
这段代码是在加载预训练模型的权重时使用的。调用了 PyTorch 中的 `load_state_dict()` 方法,将预训练模型的权重载入到当前模型中。`strict=False` 表示可以忽略一些在当前模型中不存在的权重,这样可以避免一些不必要的错误。加载成功后,打印出缺失的权重和未预期的权重,并删除 `checkpoint` 变量并清空 GPU 缓存。其中 `logger` 是一个日志记录器,用来记录一些信息,方便调试和排错。
if isinstance(self.pretrained, str): self.apply(_init_weights) logger = get_root_logger() logger.info(f'load model from: {self.pretrained}') checkpoint = torch.load(self.pretrained, map_location='cpu') state_dict = checkpoint['model'] state_dict['patch_embed.proj.weight'] = state_dict['patch_embed.proj.weight'].unsqueeze(2).repeat(1,1,self.patch_size[0],1,1) / self.patch_size[0] ## Duplicate weights for temporal attention and temporal norm # new_state_dict = state_dict.copy() # for key in state_dict: # if 'blocks' in key and 'attn' in key and 'relative' not in key and 'mask' not in key: # new_key = key.replace('attn','temporal_attn') # if not new_key in state_dict: # new_state_dict[new_key] = state_dict[key] # else: # new_state_dict[new_key] = state_dict[new_key] # if 'blocks' in key and 'norm1' in key and 'relative' not in key and 'mask' not in key: # new_key = key.replace('norm1','temporal_norm') # if not new_key in state_dict: # new_state_dict[new_key] = state_dict[key] # else: # new_state_dict[new_key] = state_dict[new_key] # state_dict = new_state_dict msg = self.load_state_dict(state_dict, strict=False) logger.info('Missing keys: {}'.format(msg.missing_keys)) logger.info('Unexpected keys: {}'.format(msg.unexpected_keys)) logger.info(f"=> loaded successfully '{self.pretrained}'") del checkpoint torch.cuda.empty_cache() elif self.pretrained is None: self.apply(_init_weights) else: raise TypeError('pretrained must be a str or None')
这段代码是初始化模型的代码。首先判断是否需要加载预训练模型,如果需要,则从指定的路径加载预训练模型的参数,并将模型的 patch_embed.proj.weight 层的权重进行重新计算,以适应输入的 patch 大小。然后将加载的参数应用到当前模型中。如果没有指定预训练模型,则直接进行权重初始化。如果预训练参数既不是字符串也不是 None,则会报错。
阅读全文