opt = keras.optimizers.Adam(learning_rate=0.001) model.compile(loss = 'binary_crossentropy', optimizer = opt,metrics=METRICS) # 编译模型。由于我们做的是二元分类,所以我们指定损失函数为binary_crossentropy,以及模式为binary # 另外常见的损失函数还有mean_squared_error、categorical_crossentropy等,请阅读帮助文件。 # 求解方法我们指定用adam,还有sgd、rmsprop等可选 history_NN=model.fit(x_train.values, y_train.values, epochs = 200, batch_size = 128,validation_split=0.1)
时间: 2024-04-02 12:32:28 浏览: 100
graph_opt.pb
这段代码是对上面建立的神经网络模型进行编译和训练。首先指定优化器为Adam,学习率为0.001,然后指定损失函数为binary_crossentropy,并且使用模型的accuracy评估模型的性能。接着通过调用fit方法对模型进行训练,训练数据为x_train和y_train,训练轮数为200,每个batch包含128个样本。此外,还指定了一个validation_split参数,用于将训练集中的一部分数据作为验证集来检验模型的性能。
训练完成后,模型的性能可以通过history_NN对象来查看,例如loss曲线、accuracy曲线等。
阅读全文