enumerate(data_sets)
时间: 2024-04-30 08:21:24 浏览: 65
这是一个Python的内置函数,用于将一个可迭代对象转换成一个枚举对象。在这个函数中,参数data_sets应该是一个可迭代对象,比如一个列表或元组。函数会返回一个迭代器对象,每个元素都是一个元组,包含两个值:序号和对应的数据集元素。示例如下:
```
data_sets = ['train', 'validation', 'test']
for i, data_set in enumerate(data_sets):
print(i, data_set)
```
输出结果为:
```
0 train
1 validation
2 test
```
这里,enumerate()函数将列表data_sets转换成了一个枚举对象,然后在for循环中依次枚举每个元素,并打印其序号和对应的数据集元素。
相关问题
def forward(self, data, org_edge_index): x = data.clone().detach() edge_index_sets = self.edge_index_sets device = data.device batch_num, node_num, all_feature = x.shape x = x.view(-1, all_feature).contiguous() gcn_outs = [] for i, edge_index in enumerate(edge_index_sets): edge_num = edge_index.shape[1] cache_edge_index = self.cache_edge_index_sets[i] if cache_edge_index is None or cache_edge_index.shape[1] != edge_num*batch_num: self.cache_edge_index_sets[i] = get_batch_edge_index(edge_index, batch_num, node_num).to(device) batch_edge_index = self.cache_edge_index_sets[i] all_embeddings = self.embedding(torch.arange(node_num).to(device)) weights_arr = all_embeddings.detach().clone() all_embeddings = all_embeddings.repeat(batch_num, 1) weights = weights_arr.view(node_num, -1) cos_ji_mat = torch.matmul(weights, weights.T) normed_mat = torch.matmul(weights.norm(dim=-1).view(-1,1), weights.norm(dim=-1).view(1,-1)) cos_ji_mat = cos_ji_mat / normed_mat dim = weights.shape[-1] topk_num = self.topk topk_indices_ji = torch.topk(cos_ji_mat, topk_num, dim=-1)[1] self.learned_graph = topk_indices_ji gated_i = torch.arange(0, node_num).T.unsqueeze(1).repeat(1, topk_num).flatten().to(device).unsqueeze(0) gated_j = topk_indices_ji.flatten().unsqueeze(0) gated_edge_index = torch.cat((gated_j, gated_i), dim=0) batch_gated_edge_index = get_batch_edge_index(gated_edge_index, batch_num, node_num).to(device) gcn_out = self.gnn_layers[i](x, batch_gated_edge_index, node_num=node_num*batch_num, embedding=all_embeddings) gcn_outs.append(gcn_out) x = torch.cat(gcn_outs, dim=1) x = x.view(batch_num, node_num, -1) indexes = torch.arange(0,node_num).to(device) out = torch.mul(x, self.embedding(indexes)) out = out.permute(0,2,1) out = F.relu(self.bn_outlayer_in(out)) out = out.permute(0,2,1) out = self.dp(out) out = self.out_layer(out) out = out.view(-1, node_num) return out
这是一个PyTorch模型的前向传播函数,它接受两个参数:data和org_edge_index。该函数使用GCN(图卷积神经网络)来处理输入数据,并返回一个输出张量。具体实现细节可以参考代码中的注释。
# seeds = [2222, 5, 4, 2, 209, 4096, 2048, 1024, 2015, 1015, 820]#11 seeds = [2]#2 num_model_seed = 1 oof = np.zeros(X_train.shape[0]) prediction = np.zeros(X_test.shape[0]) feat_imp_df = pd.DataFrame({'feats': feature_name, 'imp': 0}) parameters = { 'learning_rate': 0.008, 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': 'auc', 'num_leaves': 63, 'feature_fraction': 0.8,#原来0.8 'bagging_fraction': 0.8, 'bagging_freq': 5,#5 'seed': 2, 'bagging_seed': 1, 'feature_fraction_seed': 7, 'min_data_in_leaf': 20, 'verbose': -1, 'n_jobs':4 } fold = 5 for model_seed in range(num_model_seed): print(seeds[model_seed],"--------------------------------------------------------------------------------------------") oof_cat = np.zeros(X_train.shape[0]) prediction_cat = np.zeros(X_test.shape[0]) skf = StratifiedKFold(n_splits=fold, random_state=seeds[model_seed], shuffle=True) for index, (train_index, test_index) in enumerate(skf.split(X_train, y)): train_x, test_x, train_y, test_y = X_train[feature_name].iloc[train_index], X_train[feature_name].iloc[test_index], y.iloc[train_index], y.iloc[test_index] dtrain = lgb.Dataset(train_x, label=train_y) dval = lgb.Dataset(test_x, label=test_y) lgb_model = lgb.train( parameters, dtrain, num_boost_round=10000, valid_sets=[dval], early_stopping_rounds=100, verbose_eval=100, ) oof_cat[test_index] += lgb_model.predict(test_x,num_iteration=lgb_model.best_iteration) prediction_cat += lgb_model.predict(X_test,num_iteration=lgb_model.best_iteration) / fold feat_imp_df['imp'] += lgb_model.feature_importance() del train_x del test_x del train_y del test_y del lgb_model oof += oof_cat / num_model_seed prediction += prediction_cat / num_model_seed gc.collect()解释上面的python代码
这段 Python 代码实现了一个基于 LightGBM 模型的交叉验证和预测过程。其中的主要参数和步骤如下:
1. `seeds`: 随机数种子集合,用于交叉验证时的随机划分数据集。
2. `num_model_seed`: 随机数种子的数量,用于多次随机划分数据集并训练多个模型,以降低随机划分的影响。
3. `oof` 和 `prediction`: 用于存储交叉验证和预测结果的数组,分别表示 out-of-fold 和测试集的结果。
4. `parameters`: LightGBM 模型的超参数,包括学习率、树的数量、特征采样比例等等。
5. `fold`: 交叉验证的折数。
6. `StratifiedKFold`: 用于划分训练集和验证集的类,保证每个折中的正负样本比例相同。
7. `lgb.Dataset`: 用于将数据转换成 LightGBM 能够读取的数据格式。
8. `lgb.train`: 用于训练 LightGBM 模型,并在验证集上进行早停。
9. `feat_imp_df`: 用于存储特征重要性的 DataFrame。
10. `gc.collect()`: 用于清理内存,避免内存泄露。
这段代码的主要流程是:根据随机数种子集合和折数,进行多次交叉验证和训练,并将每个模型的 out-of-fold 结果和测试集结果进行平均,作为最终的预测结果。同时,每次训练都会记录特征重要性,最后将所有模型的特征重要性进行累加,以便后续分析特征的重要性。
阅读全文
相关推荐











