运用Pysyft框架syft版本0.2.4,torchvision版本0.5.0,torch版本1.4.0,以https://raw.githubusercontent.com/mwaskom/seaborn-data/master/diamonds.csv作为数据集,编写一个联邦学习差分隐私保护的线性回归模型
时间: 2023-06-20 18:04:59 浏览: 121
Python库 | syft-0.6.0a0-py2.py3-none-any.whl
以下是使用 Pysyft 框架实现差分隐私保护的联邦学习线性回归模型的示例代码:
```python
import torch
import syft as sy
import pandas as pd
from sklearn.preprocessing import StandardScaler
from torch.utils.data import TensorDataset, DataLoader
from torch import nn, optim
# 创建虚拟的工作节点
hook = sy.TorchHook(torch)
worker1 = sy.VirtualWorker(hook, id="worker1")
worker2 = sy.VirtualWorker(hook, id="worker2")
worker3 = sy.VirtualWorker(hook, id="worker3")
# 加载数据集并进行预处理
df = pd.read_csv('https://raw.githubusercontent.com/mwaskom/seaborn-data/master/diamonds.csv')
df = df.drop(['Unnamed: 0'], axis=1)
df = pd.get_dummies(df, columns=['cut', 'color', 'clarity'])
scaler = StandardScaler()
scaled_features = scaler.fit_transform(df.drop('price', axis=1).values)
target = df['price'].values
X_train = torch.tensor(scaled_features[:30000]).float()
y_train = torch.tensor(target[:30000]).float().view(-1, 1)
X_test = torch.tensor(scaled_features[30000:]).float()
y_test = torch.tensor(target[30000:]).float().view(-1, 1)
# 将数据分别发送给三个工作节点
X_train1 = X_train[:10000].send(worker1)
y_train1 = y_train[:10000].send(worker1)
X_train2 = X_train[10000:20000].send(worker2)
y_train2 = y_train[10000:20000].send(worker2)
X_train3 = X_train[20000:].send(worker3)
y_train3 = y_train[20000:].send(worker3)
# 创建模型
class LinearRegression(nn.Module):
def __init__(self, input_size):
super().__init__()
self.linear = nn.Linear(input_size, 1)
def forward(self, x):
return self.linear(x)
model = LinearRegression(X_train.shape[1])
# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
# 训练模型
epochs = 10
batch_size = 32
epsilon = 0.1
for epoch in range(epochs):
# 在每个工作节点上训练模型
for i in range(0, len(X_train1), batch_size):
X_batch1 = X_train1[i:i+batch_size]
y_batch1 = y_train1[i:i+batch_size]
X_batch2 = X_train2[i:i+batch_size]
y_batch2 = y_train2[i:i+batch_size]
X_batch3 = X_train3[i:i+batch_size]
y_batch3 = y_train3[i:i+batch_size]
model = model.fix_precision().send(X_batch1.location)
optimizer.zero_grad()
pred1 = model(X_batch1)
loss1 = criterion(pred1, y_batch1)
loss1.backward()
optimizer.step()
model = model.fix_precision().send(X_batch2.location)
optimizer.zero_grad()
pred2 = model(X_batch2)
loss2 = criterion(pred2, y_batch2)
loss2.backward()
optimizer.step()
model = model.fix_precision().send(X_batch3.location)
optimizer.zero_grad()
pred3 = model(X_batch3)
loss3 = criterion(pred3, y_batch3)
loss3.backward()
optimizer.step()
# 对模型进行差分隐私保护
model = model.get().float_precision()
model.weight.data += torch.normal(torch.zeros_like(model.weight.data), epsilon)
model.bias.data += torch.normal(torch.zeros_like(model.bias.data), epsilon)
model = model.fix_precision().share(X_batch1.location, X_batch2.location, X_batch3.location)
# 在测试集上评估模型的性能
with torch.no_grad():
model = model.get().float_precision()
pred = model(X_test)
loss = criterion(pred, y_test)
print('Epoch {}/{} - Test loss: {}'.format(epoch+1, epochs, loss))
```
上述代码中,首先创建了三个虚拟的工作节点,并加载并预处理了数据集。然后,将数据集分别发送给三个工作节点进行训练。在每个工作节点上,使用固定精度(fixed precision)对模型进行处理,以便在加密的状态下进行计算。然后,对模型进行差分隐私处理,以保护用户的隐私。最后,在测试集上评估模型的性能。
阅读全文