C语言图像的反卷积代码
时间: 2023-07-08 11:10:29 浏览: 142
反卷积是一种复杂的图像处理技术,需要大量的数学知识和计算。以下是一个简单的C语言反卷积示例代码,仅供参考:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define M_PI 3.14159265358979323846
int main()
{
int i, j, k, l, m, n;
int width = 512, height = 512, channel = 3;
double sigma = 1.0;
double kernel[5][5] = {{0.023528, 0.033969, 0.038393, 0.033969, 0.023528},
{0.033969, 0.049045, 0.055432, 0.049045, 0.033969},
{0.038393, 0.055432, 0.062651, 0.055432, 0.038393},
{0.033969, 0.049045, 0.055432, 0.049045, 0.033969},
{0.023528, 0.033969, 0.038393, 0.033969, 0.023528}};
double psf[512][512] = {0};
double blur[512][512][3] = {0};
double kernel_fft[512][512][3] = {0};
double psf_fft[512][512][3] = {0};
double result_fft[512][512][3] = {0};
double result[512][512][3] = {0};
// 生成高斯核
for (i = 0; i < 5; i++) {
for (j = 0; j < 5; j++) {
kernel[i][j] *= exp(-((i - 2) * (i - 2) + (j - 2) * (j - 2)) / (2 * sigma * sigma));
}
}
// 图像卷积
for (k = 0; k < channel; k++) {
for (i = 2; i < height - 2; i++) {
for (j = 2; j < width - 2; j++) {
double sum = 0;
for (l = -2; l <= 2; l++) {
for (m = -2; m <= 2; m++) {
sum += kernel[l + 2][m + 2] * blur[i + l][j + m][k];
}
}
result[i][j][k] = sum;
}
}
}
// 生成模糊点扩散函数(PSF)
for (i = 0; i < height; i++) {
for (j = 0; j < width; j++) {
double sum = 0;
for (k = 0; k < channel; k++) {
sum += (result[i][j][k] * result[i][j][k]);
}
psf[i][j] = sum;
}
}
// 将PSF转换为频域
for (k = 0; k < channel; k++) {
for (i = 0; i < height; i++) {
for (j = 0; j < width; j++) {
psf_fft[i][j][k] = psf[i][j] * pow(-1, i + j);
}
}
// 对行进行傅里叶变换
for (i = 0; i < height; i++) {
for (j = 0; j < width; j++) {
double sum_real = 0, sum_imag = 0;
for (l = 0; l < width; l++) {
sum_real += psf_fft[i][l][k] * cos(2 * M_PI * j * l / width);
sum_imag += psf_fft[i][l][k] * sin(2 * M_PI * j * l / width);
}
kernel_fft[i][j][k] = sum_real - sum_imag * I;
}
}
// 对列进行傅里叶变换
for (j = 0; j < width; j++) {
for (i = 0; i < height; i++) {
double sum_real = 0, sum_imag = 0;
for (l = 0; l < height; l++) {
sum_real += kernel_fft[l][j][k] * cos(2 * M_PI * i * l / height);
sum_imag += kernel_fft[l][j][k] * sin(2 * M_PI * i * l / height);
}
psf_fft[i][j][k] = sum_real - sum_imag * I;
}
}
}
// 将模糊图像转换为频域
for (k = 0; k < channel; k++) {
for (i = 0; i < height; i++) {
for (j = 0; j < width; j++) {
result_fft[i][j][k] = result[i][j][k] * pow(-1, i + j);
}
}
// 对行进行傅里叶变换
for (i = 0; i < height; i++) {
for (j = 0; j < width; j++) {
double sum_real = 0, sum_imag = 0;
for (l = 0; l < width; l++) {
sum_real += result_fft[i][l][k] * cos(2 * M_PI * j * l / width);
sum_imag += result_fft[i][l][k] * sin(2 * M_PI * j * l / width);
}
result_fft[i][j][k] = sum_real - sum_imag * I;
}
}
// 对列进行傅里叶变换
for (j = 0; j < width; j++) {
for (i = 0; i < height; i++) {
double sum_real = 0, sum_imag = 0;
for (l = 0; l < height; l++) {
sum_real += result_fft[l][j][k] * cos(2 * M_PI * i * l / height);
sum_imag += result_fft[l][j][k] * sin(2 * M_PI * i * l / height);
}
result_fft[i][j][k] = sum_real - sum_imag * I;
}
}
}
// 对频域图像进行反卷积
for (k = 0; k < channel; k++) {
for (i = 0; i < height; i++) {
for (j = 0; j < width; j++) {
result_fft[i][j][k] /= psf_fft[i][j][k];
}
}
// 将频域图像转换为空域图像
// 对行进行傅里叶逆变换
for (i = 0; i < height; i++) {
for (j = 0; j < width; j++) {
double sum_real = 0, sum_imag = 0;
for (l = 0; l < width; l++) {
sum_real += result_fft[i][l][k] * cos(2 * M_PI * j * l / width);
sum_imag += result_fft[i][l][k] * sin(2 * M_PI * j * l / width);
}
result[i][j][k] = sum_real + sum_imag * I;
}
}
// 对列进行傅里叶逆变换
for (j = 0; j < width; j++) {
for (i = 0; i < height; i++) {
double sum_real = 0, sum_imag = 0;
for (l = 0; l < height; l++) {
sum_real += result[l][j][k] * cos(2 * M_PI * i * l / height);
sum_imag += result[l][j][k] * sin(2 * M_PI * i * l / height);
}
result[i][j][k] = sum_real + sum_imag * I;
}
}
}
// 输出反卷积结果
for (i = 0; i < height; i++) {
for (j = 0; j < width; j++) {
printf("%.2f %.2f %.2f\n", creal(result[i][j][0]), creal(result[i][j][1]), creal(result[i][j][2]));
}
}
return 0;
}
```
该代码仅供参考,具体实现应根据实际需求进行修改和完善。
阅读全文