verilog实现fft
时间: 2023-08-04 11:26:00 浏览: 149
实现FFT需要用到复数运算,Verilog中并没有直接支持复数的数据类型,因此需要自己定义复数类型和复数运算。以下是一个简单的Verilog实现FFT的代码,仅供参考:
```
module fft(
input clk,
input rst,
input [7:0] in_real,
input [7:0] in_imag,
output [7:0] out_real,
output [7:0] out_imag
);
parameter N = 8; // FFT点数
parameter LOG2N = 3; // FFT点数的对数
// 定义复数类型
typedef struct {
logic signed [7:0] real;
logic signed [7:0] imag;
} complex_t;
// 定义复数加法运算
function complex_t complex_add(complex_t a, complex_t b);
complex_t c;
c.real = a.real + b.real;
c.imag = a.imag + b.imag;
return c;
endfunction
// 定义复数乘法运算
function complex_t complex_mul(complex_t a, complex_t b);
complex_t c;
c.real = a.real * b.real - a.imag * b.imag;
c.imag = a.real * b.imag + a.imag * b.real;
return c;
endfunction
complex_t stage[N]; // FFT各级蝴蝶运算的输入和输出
// FFT主体
always @(posedge clk or posedge rst) begin
if (rst) begin
for (int i = 0; i < N; i++) begin
stage[i].real <= 0;
stage[i].imag <= 0;
end
end else begin
// 第一级蝴蝶运算
for (int i = 0; i < N; i++) begin
complex_t tmp;
tmp.real = in_real;
tmp.imag = in_imag;
stage[i] <= tmp;
end
// 其他级蝴蝶运算
for (int s = 1; s <= LOG2N; s++) begin
int m = 2 ** s;
int n = m / 2;
complex_t wn;
wn.real = $cos(2 * $pi / m);
wn.imag = -$sin(2 * $pi / m);
for (int k = 0; k < n; k++) begin
complex_t w;
w.real = 1;
w.imag = 0;
for (int j = 0; j < N / m; j++) begin
int x = j * m + k;
int y = x + n;
complex_t u = stage[x];
complex_t v = complex_mul(stage[y], w);
stage[x] = complex_add(u, v);
stage[y] = complex_add(u, complex_mul(v, wn));
end
wn = complex_mul(wn, wn);
end
end
out_real <= stage[0].real;
out_imag <= stage[0].imag;
end
end
endmodule
```
这个Verilog实现FFT的代码并不完整,还需要外部的控制逻辑来控制输入和输出数据,以及时序控制。此外,这个代码中使用了$cos$和$sin$函数,需要在代码中引入数学库,以及处理浮点数运算的问题。因此,在实际工程中,需要考虑这些问题,进行完整的设计和实现。
阅读全文