stft_result = librosa.stft(audio_samples, n_fft=n_fft, win_length=win_length, hop_length=hop_length, center=True)
时间: 2023-11-26 15:04:21 浏览: 274
这段代码使用了 librosa 库中的 stft 函数,用于计算音频信号的短时傅里叶变换(Short-time Fourier transform,STFT),得到音频信号在时间-频率域上的表示。其中,参数 audio_samples 是输入的音频信号,n_fft 表示 STFT 的窗口大小(即傅里叶变换所使用的样本数),win_length 表示窗口的长度,hop_length 表示相邻两个窗口之间的距离(即帧移),center 表示是否将窗口的中心对齐到每个帧的中心。函数的返回值 stft_result 是一个复数矩阵,表示音频信号的 STFT。
相关问题
下面给出一段代码:class AudioDataset(Dataset): def init(self, train_data): self.train_data = train_data self.n_frames = 128 def pad_zero(self, input, length): input_shape = input.shape if input_shape[0] >= length: return input[:length] if len(input_shape) == 1: return np.append(input, [0] * (length - input_shape[0]), axis=0) if len(input_shape) == 2: return np.append(input, [[0] * input_shape[1]] * (length - input_shape[0]), axis=0) def getitem(self, index): t_r = self.train_data[index] clean_file = t_r[0] noise_file = t_r[1] wav_noise_magnitude, wav_noise_phase = self.extract_fft(noise_file) start_index = len(wav_noise_phase) - self.n_frames + 1 if start_index < 1: start_index = 1 else: start_index = np.random.randint(start_index) sub_noise_magnitude = self.pad_zero(wav_noise_magnitude[start_index:start_index + self.n_frames], self.n_frames) wav_clean_magnitude, wav_clean_phase = self.extract_fft(clean_file) sub_clean_magnitude = self.pad_zero(wav_clean_magnitude[start_index:start_index + self.n_frames], self.n_frames) b_data = {'input_clean_magnitude': sub_clean_magnitude, 'input_noise_magnitude': sub_noise_magnitude} return b_data def extract_fft(self, wav_path): audio_samples = librosa.load(wav_path, sr=16000)[0] stft_result = librosa.stft(audio_samples, n_fft=n_fft, win_length=win_length, hop_length=hop_length, center=True) stft_magnitude = np.abs(stft_result).T stft_phase = np.angle(stft_result).T return stft_magnitude, stft_phase def len(self): return len(self.train_data)。请给出详细注释
这段代码定义了一个 AudioDataset 类,继承自 PyTorch 中的 Dataset 类。主要用于处理音频数据。
```python
class AudioDataset(Dataset):
def __init__(self, train_data):
self.train_data = train_data
self.n_frames = 128
```
- `__init__` 方法:初始化函数,用于创建 `AudioDataset` 类的实例。传入一个 `train_data` 参数,该参数是一个列表,每个元素是一个二元组,分别表示干净音频文件路径和噪声音频文件路径。
- `train_data` 属性:将传入的训练数据存储在类的属性中。
- `n_frames` 属性:表示每个训练样本的长度,即帧数。
```python
def pad_zero(self, input, length):
input_shape = input.shape
if input_shape[0] >= length:
return input[:length]
if len(input_shape) == 1:
return np.append(input, [0] * (length - input_shape[0]), axis=0)
if len(input_shape) == 2:
return np.append(input, [[0] * input_shape[1]] * (length - input_shape[0]), axis=0)
```
- `pad_zero` 方法:对输入的数据进行零填充,使其长度等于指定的长度。
- `input` 参数:输入的数据。
- `length` 参数:填充后的长度。
- `input_shape` 变量:输入数据的形状。
- 如果输入数据的长度大于等于指定长度,则直接返回原始数据。
- 如果输入数据是一维数组,则在数组末尾添加若干个零,使其长度等于指定长度。
- 如果输入数据是二维数组,则在数组末尾添加若干行零,使其行数等于指定长度。
```python
def __getitem__(self, index):
t_r = self.train_data[index]
clean_file = t_r[0]
noise_file = t_r[1]
wav_noise_magnitude, wav_noise_phase = self.extract_fft(noise_file)
start_index = len(wav_noise_phase) - self.n_frames + 1
if start_index < 1:
start_index = 1
else:
start_index = np.random.randint(start_index)
sub_noise_magnitude = self.pad_zero(wav_noise_magnitude[start_index:start_index + self.n_frames], self.n_frames)
wav_clean_magnitude, wav_clean_phase = self.extract_fft(clean_file)
sub_clean_magnitude = self.pad_zero(wav_clean_magnitude[start_index:start_index + self.n_frames], self.n_frames)
b_data = {
'input_clean_magnitude': sub_clean_magnitude,
'input_noise_magnitude': sub_noise_magnitude
}
return b_data
```
- `__getitem__` 方法:该方法用于获取指定索引的训练样本。
- `index` 参数:指定的索引。
- `t_r` 变量:获取指定索引的训练数据。
- `clean_file` 和 `noise_file` 变量:分别表示干净音频文件和噪声音频文件的路径。
- `wav_noise_magnitude` 和 `wav_noise_phase` 变量:使用 librosa 库加载噪声音频文件,并提取其短时傅里叶变换(STFT)结果的幅度和相位。
- `start_index` 变量:指定从哪个位置开始提取数据。
- 如果 `(len(wav_noise_phase) - self.n_frames + 1) < 1`,说明 STFT 结果的长度不足以提取 `self.n_frames` 个帧,此时将 `start_index` 设为 1。
- 否则,随机生成一个 `start_index`,使得从噪声 STFT 结果中提取的子序列长度为 `self.n_frames`。
- `sub_noise_magnitude` 变量:对从噪声 STFT 结果中提取的子序列进行零填充,使其长度等于 `self.n_frames`。
- `wav_clean_magnitude` 和 `wav_clean_phase` 变量:使用 librosa 库加载干净音频文件,并提取其 STFT 结果的幅度和相位。
- `sub_clean_magnitude` 变量:对从干净 STFT 结果中提取的子序列进行零填充,使其长度等于 `self.n_frames`。
- `b_data` 变量:将干净 STFT 结果和噪声 STFT 结果作为字典类型的训练数据返回。
```python
def extract_fft(self, wav_path):
audio_samples = librosa.load(wav_path, sr=16000)[0]
stft_result = librosa.stft(audio_samples, n_fft=n_fft, win_length=win_length, hop_length=hop_length, center=True)
stft_magnitude = np.abs(stft_result).T
stft_phase = np.angle(stft_result).T
return stft_magnitude, stft_phase
```
- `extract_fft` 方法:该方法用于对指定的音频文件进行 STFT 变换,并返回其结果的幅度和相位。
- `wav_path` 参数:指定的音频文件路径。
- `audio_samples` 变量:使用 librosa 库加载音频文件,并获取其音频采样值。
- `stft_result` 变量:对音频采样值进行 STFT 变换,返回其结果。
- `stft_magnitude` 和 `stft_phase` 变量:分别表示 STFT 变换结果的幅度和相位。
- 返回 STFT 变换结果的幅度和相位。
```python
def __len__(self):
return len(self.train_data)
```
- `__len__` 方法:该方法用于返回训练数据的长度,即样本数量。
x = self.Stft(x, n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.window_length, return_complex=False)[:, :-1, :, :]
This line of code appears to be using a method called `Stft` to perform a short-time Fourier transform (`n_fft` is the size of the Fourier transform window, `hop_length` is the number of samples to hop between each consecutive window, and `win_length` is the length of the window function). The resulting matrix is then sliced to remove the last column of data (`[:, :-1, :, :]`). The `return_complex` argument is set to `False`, which likely means that the output is a matrix of real-valued numbers rather than complex numbers.
Without more context, it's difficult to say exactly what this code is doing or why it might be useful. However, given that it is performing a short-time Fourier transform, it is likely that this is part of a larger signal processing pipeline for some kind of audio or signal analysis task.
阅读全文
相关推荐
















