stft_result = librosa.stft(audio_samples, n_fft=n_fft, win_length=win_length, hop_length=hop_length, center=True)

时间: 2023-11-26 21:04:21 浏览: 43
这段代码使用了 librosa 库中的 stft 函数,用于计算音频信号的短时傅里叶变换(Short-time Fourier transform,STFT),得到音频信号在时间-频率域上的表示。其中,参数 audio_samples 是输入的音频信号,n_fft 表示 STFT 的窗口大小(即傅里叶变换所使用的样本数),win_length 表示窗口的长度,hop_length 表示相邻两个窗口之间的距离(即帧移),center 表示是否将窗口的中心对齐到每个帧的中心。函数的返回值 stft_result 是一个复数矩阵,表示音频信号的 STFT。
相关问题

下面给出一段代码:class AudioDataset(Dataset): def init(self, train_data): self.train_data = train_data self.n_frames = 128 def pad_zero(self, input, length): input_shape = input.shape if input_shape[0] >= length: return input[:length] if len(input_shape) == 1: return np.append(input, [0] * (length - input_shape[0]), axis=0) if len(input_shape) == 2: return np.append(input, [[0] * input_shape[1]] * (length - input_shape[0]), axis=0) def getitem(self, index): t_r = self.train_data[index] clean_file = t_r[0] noise_file = t_r[1] wav_noise_magnitude, wav_noise_phase = self.extract_fft(noise_file) start_index = len(wav_noise_phase) - self.n_frames + 1 if start_index < 1: start_index = 1 else: start_index = np.random.randint(start_index) sub_noise_magnitude = self.pad_zero(wav_noise_magnitude[start_index:start_index + self.n_frames], self.n_frames) wav_clean_magnitude, wav_clean_phase = self.extract_fft(clean_file) sub_clean_magnitude = self.pad_zero(wav_clean_magnitude[start_index:start_index + self.n_frames], self.n_frames) b_data = {'input_clean_magnitude': sub_clean_magnitude, 'input_noise_magnitude': sub_noise_magnitude} return b_data def extract_fft(self, wav_path): audio_samples = librosa.load(wav_path, sr=16000)[0] stft_result = librosa.stft(audio_samples, n_fft=n_fft, win_length=win_length, hop_length=hop_length, center=True) stft_magnitude = np.abs(stft_result).T stft_phase = np.angle(stft_result).T return stft_magnitude, stft_phase def len(self): return len(self.train_data)。请给出详细注释

这段代码定义了一个 AudioDataset 类,继承自 PyTorch 中的 Dataset 类。主要用于处理音频数据。 ```python class AudioDataset(Dataset): def __init__(self, train_data): self.train_data = train_data self.n_frames = 128 ``` - `__init__` 方法:初始化函数,用于创建 `AudioDataset` 类的实例。传入一个 `train_data` 参数,该参数是一个列表,每个元素是一个二元组,分别表示干净音频文件路径和噪声音频文件路径。 - `train_data` 属性:将传入的训练数据存储在类的属性中。 - `n_frames` 属性:表示每个训练样本的长度,即帧数。 ```python def pad_zero(self, input, length): input_shape = input.shape if input_shape[0] >= length: return input[:length] if len(input_shape) == 1: return np.append(input, [0] * (length - input_shape[0]), axis=0) if len(input_shape) == 2: return np.append(input, [[0] * input_shape[1]] * (length - input_shape[0]), axis=0) ``` - `pad_zero` 方法:对输入的数据进行零填充,使其长度等于指定的长度。 - `input` 参数:输入的数据。 - `length` 参数:填充后的长度。 - `input_shape` 变量:输入数据的形状。 - 如果输入数据的长度大于等于指定长度,则直接返回原始数据。 - 如果输入数据是一维数组,则在数组末尾添加若干个零,使其长度等于指定长度。 - 如果输入数据是二维数组,则在数组末尾添加若干行零,使其行数等于指定长度。 ```python def __getitem__(self, index): t_r = self.train_data[index] clean_file = t_r[0] noise_file = t_r[1] wav_noise_magnitude, wav_noise_phase = self.extract_fft(noise_file) start_index = len(wav_noise_phase) - self.n_frames + 1 if start_index < 1: start_index = 1 else: start_index = np.random.randint(start_index) sub_noise_magnitude = self.pad_zero(wav_noise_magnitude[start_index:start_index + self.n_frames], self.n_frames) wav_clean_magnitude, wav_clean_phase = self.extract_fft(clean_file) sub_clean_magnitude = self.pad_zero(wav_clean_magnitude[start_index:start_index + self.n_frames], self.n_frames) b_data = { 'input_clean_magnitude': sub_clean_magnitude, 'input_noise_magnitude': sub_noise_magnitude } return b_data ``` - `__getitem__` 方法:该方法用于获取指定索引的训练样本。 - `index` 参数:指定的索引。 - `t_r` 变量:获取指定索引的训练数据。 - `clean_file` 和 `noise_file` 变量:分别表示干净音频文件和噪声音频文件的路径。 - `wav_noise_magnitude` 和 `wav_noise_phase` 变量:使用 librosa 库加载噪声音频文件,并提取其短时傅里叶变换(STFT)结果的幅度和相位。 - `start_index` 变量:指定从哪个位置开始提取数据。 - 如果 `(len(wav_noise_phase) - self.n_frames + 1) < 1`,说明 STFT 结果的长度不足以提取 `self.n_frames` 个帧,此时将 `start_index` 设为 1。 - 否则,随机生成一个 `start_index`,使得从噪声 STFT 结果中提取的子序列长度为 `self.n_frames`。 - `sub_noise_magnitude` 变量:对从噪声 STFT 结果中提取的子序列进行零填充,使其长度等于 `self.n_frames`。 - `wav_clean_magnitude` 和 `wav_clean_phase` 变量:使用 librosa 库加载干净音频文件,并提取其 STFT 结果的幅度和相位。 - `sub_clean_magnitude` 变量:对从干净 STFT 结果中提取的子序列进行零填充,使其长度等于 `self.n_frames`。 - `b_data` 变量:将干净 STFT 结果和噪声 STFT 结果作为字典类型的训练数据返回。 ```python def extract_fft(self, wav_path): audio_samples = librosa.load(wav_path, sr=16000)[0] stft_result = librosa.stft(audio_samples, n_fft=n_fft, win_length=win_length, hop_length=hop_length, center=True) stft_magnitude = np.abs(stft_result).T stft_phase = np.angle(stft_result).T return stft_magnitude, stft_phase ``` - `extract_fft` 方法:该方法用于对指定的音频文件进行 STFT 变换,并返回其结果的幅度和相位。 - `wav_path` 参数:指定的音频文件路径。 - `audio_samples` 变量:使用 librosa 库加载音频文件,并获取其音频采样值。 - `stft_result` 变量:对音频采样值进行 STFT 变换,返回其结果。 - `stft_magnitude` 和 `stft_phase` 变量:分别表示 STFT 变换结果的幅度和相位。 - 返回 STFT 变换结果的幅度和相位。 ```python def __len__(self): return len(self.train_data) ``` - `__len__` 方法:该方法用于返回训练数据的长度,即样本数量。

下面给出一段代码:class AudioDataset(Dataset): def __init__(self, train_data): self.train_data = train_data self.n_frames = 128 def pad_zero(self, input, length): input_shape = input.shape if input_shape[0] >= length: return input[:length] if len(input_shape) == 1: return np.append(input, [0] * (length - input_shape[0]), axis=0) if len(input_shape) == 2: return np.append(input, [[0] * input_shape[1]] * (length - input_shape[0]), axis=0) def __getitem__(self, index): t_r = self.train_data[index] clean_file = t_r[0] noise_file = t_r[1] wav_noise_magnitude, wav_noise_phase = self.extract_fft(noise_file) start_index = len(wav_noise_phase) - self.n_frames + 1 if start_index < 1: start_index = 1 else: start_index = np.random.randint(start_index) sub_noise_magnitude = self.pad_zero(wav_noise_magnitude[start_index:start_index + self.n_frames], self.n_frames) wav_clean_magnitude, wav_clean_phase = self.extract_fft(clean_file) sub_clean_magnitude = self.pad_zero(wav_clean_magnitude[start_index:start_index + self.n_frames], self.n_frames) b_data = {'input_clean_magnitude': sub_clean_magnitude, 'input_noise_magnitude': sub_noise_magnitude} return b_data def extract_fft(self, wav_path): audio_samples = librosa.load(wav_path, sr=16000)[0] stft_result = librosa.stft(audio_samples, n_fft=n_fft, win_length=win_length, hop_length=hop_length, center=True) stft_magnitude = np.abs(stft_result).T stft_phase = np.angle(stft_result).T return stft_magnitude, stft_phase def __len__(self): return len(self.train_data)。请给出详细解释和注释

这段代码定义了一个名为 `AudioDataset` 的类,继承自 PyTorch 中的 `Dataset` 类,用于处理音频数据。 `__init__(self, train_data)` 方法接受一个名为 `train_data` 的参数,表示训练数据集。在方法内部,将 `train_data` 存储在 `self.train_data` 中,并将 `self.n_frames` 初始化为 128。 `pad_zero(self, input, length)` 方法用于将输入数据 `input` 进行零填充,使其长度达到 `length`。首先获取 `input` 的形状 `input_shape`,如果 `input_shape[0] >= length`,则直接返回 `input[:length]`;否则,根据 `input` 的维度数进行不同的填充操作,最终返回填充后的结果。 `__getitem__(self, index)` 方法用于获取数据集中索引为 `index` 的数据。首先根据 `train_data` 中的记录 `t_r` 获取清洗后的音频文件路径 `clean_file` 和噪声音频文件路径 `noise_file`。接着,使用 `extract_fft` 方法提取 `noise_file` 中的 STFT 幅度谱和相位谱,计算起始索引 `start_index`(保证 STFT 的长度恰好为 `n_frames`),然后根据 `start_index` 和 `n_frames` 对 STFT 幅度谱进行零填充,得到 `sub_noise_magnitude`。同样地,使用 `extract_fft` 方法提取 `clean_file` 中的 STFT 幅度谱,然后对其进行与 `sub_noise_magnitude` 相同的操作,得到 `sub_clean_magnitude`。最后将 `sub_clean_magnitude` 和 `sub_noise_magnitude` 存储在字典 `b_data` 中,并将其作为返回值。 `extract_fft(self, wav_path)` 方法用于从音频文件中提取 STFT 幅度谱和相位谱。首先使用 librosa 库中的 `load` 函数读取音频文件,并将采样率设置为 16000 Hz。接着,使用 librosa 库中的 `stft` 函数计算音频信号的 STFT,其中 `n_fft`、`win_length` 和 `hop_length` 分别表示 FFT 大小、窗口长度和帧移长度。最后,从 STFT 结果中提取幅度谱和相位谱,并将其转置后返回。 `__len__(self)` 方法用于获取数据集的长度,即训练数据集中记录的数量,其返回值为 `len(self.train_data)`。

相关推荐

最新推荐

recommend-type

鸡国大冒险运行程序,点开即用

recommend-type

基于Python+Flask的安全多方计算的隐私保护系统设计与实现+全部资料齐全+部署文档.zip

【资源说明】 基于Python+Flask的安全多方计算的隐私保护系统设计与实现+全部资料齐全+部署文档.zip基于Python+Flask的安全多方计算的隐私保护系统设计与实现+全部资料齐全+部署文档.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

聊天系统(java+applet).zip

聊天系统(java+applet)
recommend-type

setuptools-11.0-py2.py3-none-any.whl

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip

基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。