给定n个矩阵{Ag.4]…4n.],其中相邻4;与A;是可乘的(i=0,1…,n-2)。给定第i个矩阵的行数p;(0≤i≤n-1)和最后一个矩阵的列数pm,,要求确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。可以用动态规划法求解。引入dp[]i]表示A;×Aj+1X…×A;所需要的最少数乘次数,引入s[][i]表示A;×AytX…×A;的最优结合计算顺序中的最后一次相乘在哪个矩阵的右侧断开,请自行计算状态转移方程。核心代码如下,请完成代码缺失的部分,注意每个空只填写一个关键字、运算符、标识符或表达式(注意不需要空格和其他间隔符):void MatrixChain (int*p, int n, int**dp, int **s),void Traceback(int i, int j, int **s)补全丰富并详细注释

时间: 2024-02-15 11:02:07 浏览: 131
这道题目是矩阵连乘问题,它是动态规划的一个经典例题。给定n个矩阵{A1, A2, ..., An},其中相邻两个矩阵Ai和Ai+1是可乘的,即Ai的列数等于Ai+1的行数。每次矩阵乘法需要进行p[i-1] * p[i] * p[i+1]次数乘运算,其中p[i]表示第i个矩阵的行数和列数。 目标是确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。可以用动态规划法求解。引入dp[i][j]表示Ai×Ai+1×...×Aj所需要的最少数乘次数,引入s[i][j]表示Ai×Ai+1×...×Aj的最优结合计算顺序中的最后一次相乘在哪个矩阵的右侧断开。 状态转移方程为: dp[i][j] = min{ dp[i][k] + dp[k+1][j] + p[i-1]*p[k]*p[j] },其中i≤k<j 这个状态转移方程的意义是,对于每个区间[i, j],枚举其中的断点k,计算以k为断点的最小数乘次数,然后取其中的最小值作为dp[i][j]的值。 核心代码如下: ``` void MatrixChain(int *p, int n, int **dp, int **s) { for (int r = 2; r <= n; ++r) { // 区间长度从2开始遍历 for (int i = 1; i <= n - r + 1; ++i) { // 枚举区间左端点 int j = i + r - 1; // 区间右端点 dp[i][j] = INT_MAX; // 初始化为最大值 for (int k = i; k < j; ++k) { // 枚举断点 int t = dp[i][k] + dp[k + 1][j] + p[i - 1] * p[k] * p[j]; if (t < dp[i][j]) { // 更新最小值 dp[i][j] = t; s[i][j] = k; // 记录断点位置 } } } } } void Traceback(int i, int j, int **s) { // 根据记录的断点位置s进行回溯 if (i == j) return; Traceback(i, s[i][j], s); Traceback(s[i][j] + 1, j, s); std::cout << "(" << i << "," << s[i][j] << ")x(" << (s[i][j] + 1) << "," << j << ")"; } ``` 在MatrixChain函数中,我们首先遍历区间长度r,然后枚举区间左端点i,计算区间[i, j]的最小数乘次数,最后更新dp[i][j]的值和记录最优断点位置的s[i][j]的值。 在Traceback函数中,我们根据记录的最优断点位置s进行递归回溯,输出最优的矩阵乘法次序。 完整代码如下: ``` #include <iostream> #include <climits> void MatrixChain(int *p, int n, int **dp, int **s) { for (int r = 2; r <= n; ++r) { // 区间长度从2开始遍历 for (int i = 1; i <= n - r + 1; ++i) { // 枚举区间左端点 int j = i + r - 1; // 区间右端点 dp[i][j] = INT_MAX; // 初始化为最大值 for (int k = i; k < j; ++k) { // 枚举断点 int t = dp[i][k] + dp[k + 1][j] + p[i - 1] * p[k] * p[j]; if (t < dp[i][j]) { // 更新最小值 dp[i][j] = t; s[i][j] = k; // 记录断点位置 } } } } } void Traceback(int i, int j, int **s) { // 根据记录的断点位置s进行回溯 if (i == j) return; Traceback(i, s[i][j], s); Traceback(s[i][j] + 1, j, s); std::cout << "(" << i << "," << s[i][j] << ")x(" << (s[i][j] + 1) << "," << j << ")"; } int main() { int n = 6; // 矩阵个数 int p[] = {30, 35, 15, 5, 10, 20, 25}; // 矩阵行列数数组 int **dp = new int*[n + 1]; // 定义dp数组 int **s = new int*[n + 1]; // 定义s数组 for (int i = 1; i <= n; ++i) { dp[i] = new int[n + 1]; s[i] = new int[n + 1]; dp[i][i] = 0; // 边界条件 s[i][i] = 0; // 边界条件 } MatrixChain(p, n, dp, s); // 计算dp和s数组 std::cout << "Matrix multiplication order: "; Traceback(1, n, s); // 输出矩阵乘法次序 // 释放内存 for (int i = 1; i <= n; ++i) { delete[] dp[i]; delete[] s[i]; } delete[] dp; delete[] s; return 0; } ``` 在代码中,我们首先定义了矩阵个数n和矩阵行列数数组p。然后定义了dp和s数组,并对边界条件进行初始化。接着调用MatrixChain函数计算dp和s数组,最后调用Traceback函数输出最优矩阵乘法次序。 注意,在实际编写代码时,我们需要注意动态分配数组的内存,并在使用完毕后及时释放。
阅读全文

相关推荐

最新推荐

recommend-type

矩阵连乘问题(动态规划)报告.doc

- 给定一系列矩阵A1, A2, ..., An,其中相邻矩阵可以相乘。任务是找到一种矩阵乘法的顺序,使得执行整个乘法序列所需要的乘法操作次数最少。输入是矩阵的数量和每个矩阵的规模,输出是最佳乘法顺序和最小乘法次数。...
recommend-type

Java矩阵连乘问题(动态规划)算法实例分析

矩阵连乘问题可以描述为:给定n个矩阵:A1,A2,...,An,其中Ai与Ai+1是可乘的,i=1,2...,n-1。确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。 矩阵连乘问题的分析 由于矩阵乘法...
recommend-type

python3 图片 4通道转成3通道 1通道转成3通道 图片压缩实例

在上述代码中,我们首先通过`image.split()`方法分离4个通道,然后使用`Image.merge()`函数将红、绿、蓝三个通道合并成一个新的RGB图像,丢弃alpha通道。这样,我们就将4通道图像转换成了3通道图像。 接下来,我们...
recommend-type

动态规划之矩阵连乘问题Python实现方法

假设我们有n个矩阵A1, A2, ..., An,每个矩阵都是可乘的,即它们的列数与下一个矩阵的行数相同。我们的任务是找到一个乘法序列,使得乘法操作的总数最小。例如,在给定的例子中,我们有6个矩阵,最优的乘法顺序是(...
recommend-type

2020年5-6月C语言四级真题 - 大鹏老师题解.pdf

给定m个村庄间的距离,以及需要建立的小学数量n(0 &lt; n &lt;= m ),需要找出最优的学校布局方案并计算最小总距离。 这道题的解决方案可能涉及到图论和最短路径算法,如Prim或Kruskal算法,或者是动态规划。由于题目...
recommend-type

正整数数组验证库:确保值符合正整数规则

资源摘要信息:"validate.io-positive-integer-array是一个JavaScript库,用于验证一个值是否为正整数数组。该库可以通过npm包管理器进行安装,并且提供了在浏览器中使用的方案。" 该知识点主要涉及到以下几个方面: 1. JavaScript库的使用:validate.io-positive-integer-array是一个专门用于验证数据的JavaScript库,这是JavaScript编程中常见的应用场景。在JavaScript中,库是一个封装好的功能集合,可以很方便地在项目中使用。通过使用这些库,开发者可以节省大量的时间,不必从头开始编写相同的代码。 2. npm包管理器:npm是Node.js的包管理器,用于安装和管理项目依赖。validate.io-positive-integer-array可以通过npm命令"npm install validate.io-positive-integer-array"进行安装,非常方便快捷。这是现代JavaScript开发的重要工具,可以帮助开发者管理和维护项目中的依赖。 3. 浏览器端的使用:validate.io-positive-integer-array提供了在浏览器端使用的方案,这意味着开发者可以在前端项目中直接使用这个库。这使得在浏览器端进行数据验证变得更加方便。 4. 验证正整数数组:validate.io-positive-integer-array的主要功能是验证一个值是否为正整数数组。这是一个在数据处理中常见的需求,特别是在表单验证和数据清洗过程中。通过这个库,开发者可以轻松地进行这类验证,提高数据处理的效率和准确性。 5. 使用方法:validate.io-positive-integer-array提供了简单的使用方法。开发者只需要引入库,然后调用isValid函数并传入需要验证的值即可。返回的结果是一个布尔值,表示输入的值是否为正整数数组。这种简单的API设计使得库的使用变得非常容易上手。 6. 特殊情况处理:validate.io-positive-integer-array还考虑了特殊情况的处理,例如空数组。对于空数组,库会返回false,这帮助开发者避免在数据处理过程中出现错误。 总结来说,validate.io-positive-integer-array是一个功能实用、使用方便的JavaScript库,可以大大简化在JavaScript项目中进行正整数数组验证的工作。通过学习和使用这个库,开发者可以更加高效和准确地处理数据验证问题。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练

![【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练](https://img-blog.csdnimg.cn/20210619170251934.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNjc4MDA1,size_16,color_FFFFFF,t_70) # 1. 损失函数与随机梯度下降基础 在机器学习中,损失函数和随机梯度下降(SGD)是核心概念,它们共同决定着模型的训练过程和效果。本
recommend-type

在ADS软件中,如何选择并优化低噪声放大器的直流工作点以实现最佳性能?

在使用ADS软件进行低噪声放大器设计时,选择和优化直流工作点是至关重要的步骤,它直接关系到放大器的稳定性和性能指标。为了帮助你更有效地进行这一过程,推荐参考《ADS软件设计低噪声放大器:直流工作点选择与仿真技巧》,这将为你提供实用的设计技巧和优化方法。 参考资源链接:[ADS软件设计低噪声放大器:直流工作点选择与仿真技巧](https://wenku.csdn.net/doc/9867xzg0gw?spm=1055.2569.3001.10343) 直流工作点的选择应基于晶体管的直流特性,如I-V曲线,确保工作点处于晶体管的最佳线性区域内。在ADS中,你首先需要建立一个包含晶体管和偏置网络
recommend-type

系统移植工具集:镜像、工具链及其他必备软件包

资源摘要信息:"系统移植文件包通常包含了操作系统的核心映像、编译和开发所需的工具链以及其他辅助工具,这些组件共同作用,使得开发者能够在新的硬件平台上部署和运行操作系统。" 系统移植文件包是软件开发和嵌入式系统设计中的一个重要概念。在进行系统移植时,开发者需要将操作系统从一个硬件平台转移到另一个硬件平台。这个过程不仅需要操作系统的系统镜像,还需要一系列工具来辅助整个移植过程。下面将详细说明标题和描述中提到的知识点。 **系统镜像** 系统镜像是操作系统的核心部分,它包含了操作系统启动、运行所需的所有必要文件和配置。在系统移植的语境中,系统镜像通常是指操作系统安装在特定硬件平台上的完整副本。例如,Linux系统镜像通常包含了内核(kernel)、系统库、应用程序、配置文件等。当进行系统移植时,开发者需要获取到适合目标硬件平台的系统镜像。 **工具链** 工具链是系统移植中的关键部分,它包括了一系列用于编译、链接和构建代码的工具。通常,工具链包括编译器(如GCC)、链接器、库文件和调试器等。在移植过程中,开发者使用工具链将源代码编译成适合新硬件平台的机器代码。例如,如果原平台使用ARM架构,而目标平台使用x86架构,则需要重新编译源代码,生成可以在x86平台上运行的二进制文件。 **其他工具** 除了系统镜像和工具链,系统移植文件包还可能包括其他辅助工具。这些工具可能包括: - 启动加载程序(Bootloader):负责初始化硬件设备,加载操作系统。 - 驱动程序:使得操作系统能够识别和管理硬件资源,如硬盘、显卡、网络适配器等。 - 配置工具:用于配置操作系统在新硬件上的运行参数。 - 系统测试工具:用于检测和验证移植后的操作系统是否能够正常运行。 **文件包** 文件包通常是指所有这些组件打包在一起的集合。这些文件可能以压缩包的形式存在,方便下载、存储和传输。文件包的名称列表中可能包含如下内容: - 操作系统特定版本的镜像文件。 - 工具链相关的可执行程序、库文件和配置文件。 - 启动加载程序的二进制代码。 - 驱动程序包。 - 配置和部署脚本。 - 文档说明,包括移植指南、版本说明和API文档等。 在进行系统移植时,开发者首先需要下载对应的文件包,解压后按照文档中的指导进行操作。在整个过程中,开发者需要具备一定的硬件知识和软件开发经验,以确保操作系统能够在新的硬件上正确安装和运行。 总结来说,系统移植文件包是将操作系统和相关工具打包在一起,以便于开发者能够在新硬件平台上进行系统部署。了解和掌握这些组件的使用方法和作用是进行系统移植工作的重要基础。