遗传算法GA优化SVM的Matlab代码

时间: 2024-01-16 20:05:17 浏览: 29
以下是一个简单的遗传算法GA优化支持向量机SVM的Matlab代码: ```matlab %% 遗传算法GA优化SVM clear all; close all; clc; %% 生成数据 load fisheriris; X = meas(1:100,3:4); % 只取前两个特征 Y = species(1:100); Y = cellfun(@(x) isequal(x,'versicolor'),Y); % 将标签转换为二分类 %% SVM模型 svmModel = fitcsvm(X, Y, 'KernelFunction', 'rbf', 'OptimizeHyperparameters', 'auto', 'HyperparameterOptimizationOptions', struct('AcquisitionFunctionName', 'expected-improvement-plus')); %% GA优化 % 定义适应度函数 fitnessFunction = @(x) kfoldLoss(fitcsvm(X, Y, 'KernelFunction', 'rbf', 'BoxConstraint', x(1), 'KernelScale', x(2))); % 定义变量范围和约束条件 nvars = 2; lb = [0.01, 0.1]; ub = [10, 10]; nonlcon = @(x)constraintFcn(x); % 定义约束条件函数 function [c, ceq] = constraintFcn(x) c = []; ceq = []; end % 运行遗传算法 options = optimoptions('ga', 'PopulationSize', 100, 'MaxGenerations', 50, 'FunctionTolerance', 1e-4, 'EliteCount', 10); [x, fval] = ga(fitnessFunction, nvars, [], [], [], [], lb, ub, nonlcon, options); %% 结果 svmModelGA = fitcsvm(X, Y, 'KernelFunction', 'rbf', 'BoxConstraint', x(1), 'KernelScale', x(2)); figure; gscatter(X(:,1), X(:,2), Y, 'rb', '.', 10); hold on; plot(svmModel.SupportVectors(:,1), svmModel.SupportVectors(:,2), 'ko', 'MarkerSize', 10); plot(svmModelGA.SupportVectors(:,1), svmModelGA.SupportVectors(:,2), 'kx', 'MarkerSize', 10); syms x1 x2; f = svmModelGA.Beta'*exp(-svmModelGA.KernelParameters.Scale^2*(x1-svmModelGA.SupportVectors(:,1)').^2-svmModelGA.KernelParameters.BoxConstraint*(x2-svmModelGA.SupportVectors(:,2)').^2+svmModelGA.Bias); fplot(f, [min(X(:,1))-0.5,max(X(:,1))+0.5],'k-'); title(sprintf('SVM with GA optimization (BoxConstraint=%g, KernelScale=%g)', x(1), x(2))); legend('class 0', 'class 1', 'SVM without GA', 'SVM with GA', 'Location', 'Best'); hold off; ``` 上述代码中,使用了Matlab的`fitcsvm`函数来生成初始的SVM模型,并通过其自带的超参数优化功能来确定一组较优的超参数。接着,定义了适应度函数`fitnessFunction`,并使用Matlab的`ga`函数来运行遗传算法,并得到最优解`x`和最优适应度值`fval`。最后,使用得到的最优解重新训练SVM模型,并将其结果与初始SVM模型结果进行比较。 需要注意的是,上述代码中的适应度函数和变量范围、约束条件是根据具体问题而定的,需要根据实际情况进行修改。同时,遗传算法的运行结果可能会受到初始种群、交叉概率、变异概率等因素的影响,需要进行多次运行并取平均值来得到更稳定的结果。

相关推荐

最新推荐

recommend-type

基于matlab实现人工免疫算法的解决TSP问题的方法

基于matlab实现人工免疫算法的解决TSP问题的方法,体现了免疫算法在进化计算过程中的抗原学习、记忆机制、浓度调节机制以及多样性抗体保持策略等优良特性.rar
recommend-type

麦肯锡图表绘制培训.pptx

麦肯锡图表绘制培训.pptx
recommend-type

Java_Android的自由轻量级流媒体前端.zip

Java_Android的自由轻量级流媒体前端
recommend-type

node-v18.20.2-linux-arm64

node-v18.20.2-linux-arm64node-v18.20.2-linux-arm64 node-v18.20.2-linux-arm64node-v18.20.2-linux-arm64 node-v18.20.2-linux-arm64node-v18.20.2-linux-arm64 node-v18.20.2-linux-arm64node-v18.20.2-linux-arm64 node-v18.20.2-linux-arm64node-v18.20.2-linux-arm64 node-v18.20.2-linux-arm64node-v18.20.2-linux-arm64 node-v18.20.2-linux-arm64node-v18.20.2-linux-arm64 node-v18.20.2-linux-arm64node-v18.20.2-linux-arm64 node-v18.20.2-linux-arm64node-v18.20.2-linux-arm64
recommend-type

华为的OD(Organizational Development)

华为的OD(Organizational Development)
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】增量式PID的simulink仿真实现

# 2.1 Simulink仿真环境简介 Simulink是MATLAB中用于建模、仿真和分析动态系统的图形化环境。它提供了一个直观的用户界面,允许用户使用块和连接线来创建系统模型。Simulink模型由以下元素组成: - **子系统:**将复杂系统分解成更小的、可管理的模块。 - **块:**代表系统中的组件,如传感器、执行器和控制器。 - **连接线:**表示信号在块之间的流动。 Simulink仿真环境提供了广泛的块库,涵盖了各种工程学科,包括控制系统、电子和机械工程。它还支持用户自定义块的创建,以满足特定仿真需求。 # 2. Simulink仿真环境的搭建和建模 ### 2.
recommend-type

训练集和测试集的准确率都99%,但是预测效果不好

即使训练集和测试集的准确率都很高,但是在实际的预测中表现不佳,可能会有以下几个原因: 1. 数据质量问题:模型训练和测试的数据可能存在问题,比如数据标签错误、数据集采样不均衡、数据集中存在异常值等问题,这些问题可能会导致模型在实际预测中表现不佳。 2. 特征工程问题:模型的特征工程可能存在问题,导致模型无法很好地捕捉数据的特征,从而影响预测效果。 3. 模型选择问题:模型的选择可能不合适,比如选择的模型太简单,无法很好地拟合数据,或者选择的模型太复杂,导致过拟合等问题。 4. 超参数调整问题:模型的超参数可能没有调整到最佳状态,需要进行调整。 针对以上可能的原因,可以采取相应的措施进
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。