使用pytorch实现focal loss
时间: 2023-11-27 11:05:04 浏览: 83
pytorch实现focal loss的两种方式小结
好的,使用 PyTorch 实现 Focal Loss 可以帮助解决分类问题中的类不平衡问题,提高模型的准确率和鲁棒性。具体实现可以参考以下代码:
```
import torch.nn as nn
import torch
class FocalLoss(nn.Module):
def __init__(self, alpha=1, gamma=2):
super(FocalLoss, self).__init__()
self.alpha = alpha
self.gamma = gamma
def forward(self, inputs, targets):
BCE_loss = nn.CrossEntropyLoss(reduction='none')(inputs, targets)
pt = torch.exp(-BCE_loss)
F_loss = self.alpha * (1-pt)**self.gamma * BCE_loss
return F_loss.mean()
```
使用时,只需将该自定义 Loss 传入模型即可,例如:
```
model = Classifier()
loss_fn = FocalLoss(alpha=0.25, gamma=2)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
for epoch in range(num_epochs):
for input, target in train_loader:
output = model(input)
loss = loss_fn(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
希望能对您有所帮助!
阅读全文