用matlab代码实现朴素贝叶斯分类器,要求如下:1.导入鸢尾花数据集; 2.分别取三个类中每个类的40个样本作为训练集,10个样本作为测试集; 3.计算每个类的概率密度函数,即每个类的样本均值与方差(假设样本特征数据满足高斯分布); 4.将测试样本带入每个类的概率密度函数,并判断该样本属于哪个类别; 5.计算精确率,召回率,F度量
时间: 2024-03-24 10:40:00 浏览: 49
好的,我会根据您的要求回答这个问题。
首先,我们需要导入鸢尾花数据集。可以使用 `load` 命令来导入数据集。代码如下:
```
load fisheriris
```
然后,我们需要将数据集分成训练集和测试集。我们可以分别取三个类中每个类的40个样本作为训练集,10个样本作为测试集。代码如下:
```
train_data = [meas(1:40,:); meas(51:90,:); meas(101:140,:)];
train_labels = [ones(40,1); 2*ones(40,1); 3*ones(40,1)];
test_data = [meas(41:50,:); meas(91:100,:); meas(141:150,:)];
test_labels = [ones(10,1); 2*ones(10,1); 3*ones(10,1)];
```
接下来,我们需要计算每个类的概率密度函数。假设样本特征数据满足高斯分布,我们可以使用 `mean` 和 `var` 函数来计算每个类的样本均值和方差。代码如下:
```
mu1 = mean(train_data(train_labels==1,:));
sigma1 = var(train_data(train_labels==1,:));
mu2 = mean(train_data(train_labels==2,:));
sigma2 = var(train_data(train_labels==2,:));
mu3 = mean(train_data(train_labels==3,:));
sigma3 = var(train_data(train_labels==3,:));
```
然后,我们可以将测试样本带入每个类的概率密度函数,并判断该样本属于哪个类别。代码如下:
```
pred_labels = zeros(size(test_labels));
for i=1:size(test_data,1)
p1 = normpdf(test_data(i,:), mu1, sqrt(sigma1));
p2 = normpdf(test_data(i,:), mu2, sqrt(sigma2));
p3 = normpdf(test_data(i,:), mu3, sqrt(sigma3));
[~, idx] = max([p1,p2,p3]);
pred_labels(i) = idx;
end
```
最后,我们可以计算精确率,召回率和 F度量。代码如下:
```
tp = sum((test_labels==1) & (pred_labels==1));
fp = sum((test_labels~=1) & (pred_labels==1));
fn = sum((test_labels==1) & (pred_labels~=1));
precision1 = tp / (tp + fp);
recall1 = tp / (tp + fn);
f1_score1 = 2 * precision1 * recall1 / (precision1 + recall1);
tp = sum((test_labels==2) & (pred_labels==2));
fp = sum((test_labels~=2) & (pred_labels==2));
fn = sum((test_labels==2) & (pred_labels~=2));
precision2 = tp / (tp + fp);
recall2 = tp / (tp + fn);
f1_score2 = 2 * precision2 * recall2 / (precision2 + recall2);
tp = sum((test_labels==3) & (pred_labels==3));
fp = sum((test_labels~=3) & (pred_labels==3));
fn = sum((test_labels==3) & (pred_labels~=3));
precision3 = tp / (tp + fp);
recall3 = tp / (tp + fn);
f1_score3 = 2 * precision3 * recall3 / (precision3 + recall3);
```
这就是用 MATLAB 实现朴素贝叶斯分类器的完整代码。
阅读全文