from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split from sklearn.svm import SVC from sklearn.metrics import accuracy_score import time breast_cancer = load_breast_cancer() X = breast_cancer.data y = breast_cancer.target啥意思
时间: 2023-12-30 12:05:35 浏览: 176
Python数据集乳腺癌数据集(from sklearn.datasets import load-breast-cancer)
5星 · 资源好评率100%
这些程序是用来实现一个基于支持向量机(SVM)的分类器,该分类器可以对乳腺癌数据集进行分类。具体来说,该程序使用load_breast_cancer函数加载乳腺癌数据集,并将特征数据保存在X变量中,将目标数据保存在y变量中。接着,使用train_test_split函数将数据集随机划分为训练集和测试集,以便进行模型训练和评估。然后,使用svm模块中的SVC类创建一个支持向量机分类器,并使用训练集进行拟合。最后,使用测试集进行预测,并使用accuracy_score函数计算分类器的准确率。这些程序中的time库是用来计时的,但是在这段代码中并没有使用。
阅读全文