python实现卷积神经网络实现一个mnist手写数字识别的代码
时间: 2023-10-23 16:09:57 浏览: 118
基于Python的MNIST手写数字识别卷积神经网络设计源码
好的,请稍等,我正在为你查找相关代码。以下是Python实现卷积神经网络实现一个mnist手写数字识别的代码示例:
```python
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten
# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# 数据预处理
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
num_classes = 10
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
# 构建模型
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
# 编译模型
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
# 训练模型
batch_size = 128
epochs = 12
model.fit(x_train, y_train, batch_size=batch_size,
epochs=epochs, verbose=1, validation_data=(x_test, y_test))
# 评估模型
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
```
希望这个代码示例能满足你的需求。
阅读全文