python实现逐步回归
时间: 2023-07-07 22:43:41 浏览: 119
利用python实现逐步回归
5星 · 资源好评率100%
逐步回归(Stepwise Regression)是一种特征选择方法,可以用于多元线性回归模型中,它通过逐步加入或删除变量的方式来构建模型。Python实现逐步回归可以使用statsmodels库的OLS函数。
以下是一个简单的示例代码:
```python
import pandas as pd
import statsmodels.api as sm
# 加载数据
data = pd.read_csv('data.csv')
# 定义自变量和因变量
X = data[['x1', 'x2', 'x3', 'x4']]
y = data['y']
# 逐步回归
def stepwise_selection(X, y, initial_list=[], threshold_in=0.01, threshold_out=0.05, verbose=True):
included = list(initial_list)
while True:
changed = False
excluded = list(set(X.columns) - set(included))
new_pval = pd.Series(index=excluded)
for new_column in excluded:
model = sm.OLS(y, sm.add_constant(pd.DataFrame(X[included + [new_column]]))).fit()
new_pval[new_column] = model.pvalues[new_column]
min_pval = new_pval.min()
if min_pval < threshold_in:
best_feature = new_pval.argmin()
included.append(best_feature)
changed = True
if verbose:
print('Add {:30} with p-value {:.6}'.format(best_feature, min_pval))
model = sm.OLS(y, sm.add_constant(pd.DataFrame(X[included]))).fit()
# 使用f-test检验是否需要移除特征
pvalues = model.pvalues.iloc[1:]
worst_pval = pvalues.max()
if worst_pval > threshold_out:
changed = True
worst_feature = pvalues.argmax()
included.remove(worst_feature)
if verbose:
print('Drop {:30} with p-value {:.6}'.format(worst_feature, worst_pval))
if not changed:
break
return included
result = stepwise_selection(X, y)
print('resulting features:')
print(result)
```
上面的代码中,stepwise_selection函数实现了逐步回归的过程。函数的输入包括自变量X、因变量y、初始特征列表(默认为空)、加入特征的显著性水平和移除特征的显著性水平。函数的输出是逐步回归后选出的特征列表。
阅读全文