matlab中tv函数的代码
时间: 2024-01-05 19:03:28 浏览: 84
以下是MATLAB中实现全变分图像融合的tv函数的代码:
```matlab
function [grad, mean] = tv(img, lambda, iter)
% 输入:
% img: 要进行全变分的图像,可以是灰度图或彩色图,大小为m*n或m*n*3
% lambda: 正则化参数,默认值为0.1
% iter: 迭代次数,默认值为100
% 输出:
% grad: 图像的梯度,大小为m*n或m*n*3
% mean: 图像的平均值,大小为m*n或m*n*3
% 获取图像大小
[m, n, c] = size(img);
% 如果是灰度图,将其转换为三通道图像
if c == 1
img = cat(3, img, img, img);
end
% 初始化grad和mean
grad = img;
mean = img;
% 设置默认参数
if nargin < 2
lambda = 0.1;
end
if nargin < 3
iter = 100;
end
% 计算梯度和平均值
for i = 1:iter
% 计算梯度
grad = grad - lambda*div(grad);
% 计算平均值
for j = 1:3
mean(:,:,j) = meanfilt2(mean(:,:,j));
end
end
% 将梯度和平均值分别归一化到[0,1]范围
grad = (grad - min(grad(:))) / (max(grad(:)) - min(grad(:)));
mean = (mean - min(mean(:))) / (max(mean(:)) - min(mean(:)));
end
% 计算梯度的函数
function d = div(grad)
% 计算梯度的div函数,使用差分计算梯度
[m, n, c] = size(grad);
if c == 1
dy = diff(grad, 1, 1);
dx = diff(grad, 1, 2);
d = zeros(m, n);
d(1:m-1,:) = d(1:m-1,:) + dy;
d(2:m,:) = d(2:m,:) - dy;
d(:,1:n-1) = d(:,1:n-1) + dx;
d(:,2:n) = d(:,2:n) - dx;
else
dy = diff(grad, 1, 1);
dx = diff(grad, 1, 2);
d = zeros(m, n, 3);
d(1:m-1,:,1) = d(1:m-1,:,1) + dy(:,:,1);
d(2:m,:,1) = d(2:m,:,1) - dy(:,:,1);
d(:,1:n-1,1) = d(:,1:n-1,1) + dx(:,:,1);
d(:,2:n,1) = d(:,2:n,1) - dx(:,:,1);
d(1:m-1,:,2) = d(1:m-1,:,2) + dy(:,:,2);
d(2:m,:,2) = d(2:m,:,2) - dy(:,:,2);
d(:,1:n-1,2) = d(:,1:n-1,2) + dx(:,:,2);
d(:,2:n,2) = d(:,2:n,2) - dx(:,:,2);
d(1:m-1,:,3) = d(1:m-1,:,3) + dy(:,:,3);
d(2:m,:,3) = d(2:m,:,3) - dy(:,:,3);
d(:,1:n-1,3) = d(:,1:n-1,3) + dx(:,:,3);
d(:,2:n,3) = d(:,2:n,3) - dx(:,:,3);
end
end
% 二维均值滤波函数
function img_filt = meanfilt2(img)
% img: 输入图像,大小为m*n
% img_filt: 滤波后的图像,大小为m*n
% 定义滤波器
h = fspecial('average', 3);
% 对图像进行滤波
img_filt = imfilter(img, h, 'replicate');
end
```
其中,div函数用于计算梯度的div算子,meanfilt2函数用于计算平均值的二维均值滤波函数。
阅读全文