将pandas数据集中除了最后6列,其余所有进行异常值处理(分位数)代码
时间: 2024-03-23 08:37:07 浏览: 56
可以使用 pandas 中的 `quantile` 函数来计算分位数,然后使用 `mask` 函数来将异常值替换为 NaN。以下是示例代码:
```python
import pandas as pd
# 读取数据集
df = pd.read_csv('your_dataset.csv')
# 计算分位数
q1 = df.iloc[:, :-6].quantile(0.25)
q3 = df.iloc[:, :-6].quantile(0.75)
iqr = q3 - q1
# 替换异常值为 NaN
df.iloc[:, :-6] = df.iloc[:, :-6].mask((df.iloc[:, :-6] < q1 - 1.5 * iqr) | (df.iloc[:, :-6] > q3 + 1.5 * iqr))
```
这段代码将数据集中除了最后6列以外的所有列进行了异常值处理,将超过 $1.5 \times IQR$ 的值替换为 NaN。你可以根据需要调整分位数和替换的阈值。
相关问题
利用上下分位数,将csv中的异常值删去的python代码
你好!我是 ChitGPT。关于您的问题,以下是一个简单的 Python 示例代码,演示如何使用上下分位数删除 CSV 文件中的异常值。
```python
import pandas as pd
# 读取 CSV 文件
df = pd.read_csv('your_data.csv')
# 计算上下四分位数
q1 = df.quantile(0.25)
q3 = df.quantile(0.75)
iqr = q3 - q1
# 计算上下限
lower_bound = q1 - 1.5 * iqr
upper_bound = q3 + 1.5 * iqr
# 删除异常值
df = df[(df >= lower_bound) & (df <= upper_bound)]
# 保存删除异常值后的 CSV 文件
df.to_csv('your_data_without_outliers.csv', index=False)
```
当您运行此代码时,将从名为 `your_data.csv` 的 CSV 文件中读取数据,并计算它的上下四分位数。然后,将通过计算来确定上下限,然后使用 Pandas DataFrame 的布尔索引方法从原始数据中删除异常值。最后,将删除异常值的数据保存到名为 `your_data_without_outliers.csv` 的新 CSV 文件中。
请注意,在实际应用中,您可能需要根据数据的实际情况调整阈值(例如,通过更改乘法因子来更松或更紧地定义异常值)。此外,我们不建议直接删除异常值,而是建议您考虑使用其他方法,例如替换或插值,以更好地处理异常值的影响。
使用学习过的理论知识(Numpy数值分析基础、Matplotlib数据可视化基础、Pandas统计分析基础),对data.csv用户用户用电量数据进行相关处理,其中数据中有编号为1-200的200位电力用户,DATA_DATE表示时间,如2015/1/1表示2015年1月1日,KWH为用电量。请完成以下工作:1、将数据进行转置,转置后行为用户编号、列为日期、值为用户每日用电量。2、对数据中的异常数据进行识别并处理。3、统计每个用户用电数据的基本统计量,包括:最大值、最小值、均值、中位数、和、方差、偏度、峰度。4、每个用户用电数据按日差分,并求取差分结果的基本统计量,统计量同3。5、求取每个用户的5%分位数。6、每个用户按周求和并差分(一周7天,年度分开),并求取差分结果的基本统计量,统计量同三。7、统计每个用户的日用电量在其最大值0.9倍以上的次数。8、求取每个用户日为最大值/最小值的索引月份,若最大值/最小值存在于多个月份中,则输出含有最大值/最小值最多的那个月份。如1号用户的最小值为0,则看哪个月的0最多。9、求取每个用户七八月电量和与三四月电量和的比值,最大值的比值,最小值的比值,均值(日均电量)的比值。10、合并上述特征。
1、将数据进行转置,转置后行为用户编号、列为日期、值为用户每日用电量。
```python
import pandas as pd
# 读取数据
df = pd.read_csv('data.csv')
# 转换日期格式
df['DATA_DATE'] = pd.to_datetime(df['DATA_DATE'])
# 转置数据
df_pivot = df.pivot(index='ID', columns='DATA_DATE', values='KWH')
```
2、对数据中的异常数据进行识别并处理。
```python
import numpy as np
# 计算每个用户每天用电量的标准差
std = df_pivot.std(axis=1)
# 计算每个用户每天用电量的平均值
mean = df_pivot.mean(axis=1)
# 将超过平均值+3倍标准差或小于平均值-3倍标准差的数据替换为NaN
df_pivot[(df_pivot > mean.values[:, np.newaxis] + 3 * std.values[:, np.newaxis]) |
(df_pivot < mean.values[:, np.newaxis] - 3 * std.values[:, np.newaxis])] = np.nan
```
3、统计每个用户用电数据的基本统计量,包括:最大值、最小值、均值、中位数、和、方差、偏度、峰度。
```python
from scipy.stats import skew, kurtosis
# 统计每个用户用电数据的基本统计量
statistics = pd.DataFrame({
'max': df_pivot.max(),
'min': df_pivot.min(),
'mean': df_pivot.mean(),
'median': df_pivot.median(),
'sum': df_pivot.sum(),
'var': df_pivot.var(),
'skew': skew(df_pivot, axis=1),
'kurtosis': kurtosis(df_pivot, axis=1)
})
```
4、每个用户用电数据按日差分,并求取差分结果的基本统计量,统计量同3。
```python
# 按日差分
df_diff = df_pivot.diff(axis=1)
# 删除第一列的NaN值
df_diff = df_diff.iloc[:, 1:]
# 统计每个用户用电数据按日差分后的基本统计量
diff_statistics = pd.DataFrame({
'max': df_diff.max(),
'min': df_diff.min(),
'mean': df_diff.mean(),
'median': df_diff.median(),
'sum': df_diff.sum(),
'var': df_diff.var(),
'skew': skew(df_diff, axis=1),
'kurtosis': kurtosis(df_diff, axis=1)
})
```
5、求取每个用户的5%分位数。
```python
# 求取每个用户的5%分位数
quantile_5 = df_pivot.quantile(q=0.05, axis=1)
```
6、每个用户按周求和并差分(一周7天,年度分开),并求取差分结果的基本统计量,统计量同3。
```python
# 按周求和
df_weekly = df_pivot.resample('W', axis=1).sum()
# 按年度分开
df_weekly = df_weekly.groupby(df_weekly.columns.year, axis=1)
# 差分
df_weekly_diff = df_weekly.diff(axis=1)
# 删除第一列的NaN值
df_weekly_diff = df_weekly_diff.iloc[:, 1:]
# 统计每个用户用电数据按周差分后的基本统计量
weekly_diff_statistics = pd.DataFrame({
'max': df_weekly_diff.max(),
'min': df_weekly_diff.min(),
'mean': df_weekly_diff.mean(),
'median': df_weekly_diff.median(),
'sum': df_weekly_diff.sum(),
'var': df_weekly_diff.var(),
'skew': skew(df_weekly_diff, axis=1),
'kurtosis': kurtosis(df_weekly_diff, axis=1)
})
```
7、统计每个用户的日用电量在其最大值0.9倍以上的次数。
```python
# 统计每个用户的日用电量在其最大值0.9倍以上的次数
count = (df_pivot > df_pivot.max() * 0.9).sum()
```
8、求取每个用户日为最大值/最小值的索引月份,若最大值/最小值存在于多个月份中,则输出含有最大值/最小值最多的那个月份。如1号用户的最小值为0,则看哪个月的0最多。
```python
# 求取每个用户日为最大值的索引月份
max_month = df_pivot.idxmax(axis=1).dt.month
# 求取每个用户日为最小值的索引月份
min_month = df_pivot.idxmin(axis=1).dt.month
# 统计每个用户日为最大值/最小值的索引月份中出现次数最多的月份
max_month_count = max_month.value_counts()
min_month_count = min_month.value_counts()
# 输出结果
print('每个用户日为最大值的索引月份:')
print(max_month[max_month == max_month_count.idxmax()].value_counts())
print('\n每个用户日为最小值的索引月份:')
print(min_month[min_month == min_month_count.idxmax()].value_counts())
```
9、求取每个用户七八月电量和与三四月电量和的比值,最大值的比值,最小值的比值,均值(日均电量)的比值。
```python
# 求取每个用户七八月电量和
summer_sum = df_pivot.loc[:, df_pivot.columns.month.isin([7, 8])].sum(axis=1)
# 求取每个用户三四月电量和
spring_sum = df_pivot.loc[:, df_pivot.columns.month.isin([3, 4])].sum(axis=1)
# 求取比值
ratio = summer_sum / spring_sum
# 输出结果
print('每个用户七八月电量和与三四月电量和的比值:')
print(ratio)
print('\n最大值的比值:')
print(ratio.max())
print('\n最小值的比值:')
print(ratio.min())
print('\n均值的比值:')
print(ratio.mean())
```
10、合并上述特征。
```python
# 合并特征
features = pd.concat([
statistics,
diff_statistics,
pd.DataFrame({'quantile_5': quantile_5}),
weekly_diff_statistics,
pd.DataFrame({'count': count}),
pd.DataFrame({'max_month': max_month, 'min_month': min_month}),
pd.DataFrame({'ratio': ratio})
], axis=1)
```
阅读全文