python自适应模糊神经网络的代码
时间: 2023-09-13 22:08:06 浏览: 105
用于自适应控制的模糊神经网络代码,输入是误差和误差变化率.7z
5星 · 资源好评率100%
以下是一个基于Python的自适应模糊神经网络的代码:
```python
import numpy as np
class FuzzyNeuralNetwork:
def __init__(self, input_dim, output_dim, num_rules):
self.input_dim = input_dim
self.output_dim = output_dim
self.num_rules = num_rules
self.params = {
'rules': np.random.rand(num_rules, input_dim + 1),
'output_weights': np.random.rand(num_rules, output_dim)
}
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def forward(self, x):
rules = self.params['rules']
output_weights = self.params['output_weights']
# Compute rule activations
rule_activations = np.zeros(self.num_rules)
for i in range(self.num_rules):
rule_activations[i] = np.min([self.sigmoid(np.sum(x * rules[i, :-1]) + rules[i, -1]), 1])
# Compute output
output = np.dot(rule_activations, output_weights)
return output
def train(self, x, y, learning_rate=0.1):
rules = self.params['rules']
output_weights = self.params['output_weights']
# Compute rule activations
rule_activations = np.zeros(self.num_rules)
for i in range(self.num_rules):
rule_activations[i] = np.min([self.sigmoid(np.sum(x * rules[i, :-1]) + rules[i, -1]), 1])
# Compute output error
output = np.dot(rule_activations, output_weights)
output_error = y - output
# Update output weights
output_weights += learning_rate * np.outer(rule_activations, output_error)
# Update rule parameters
for i in range(self.num_rules):
rule_error = output_error * output_weights[i]
for j in range(self.input_dim):
rules[i, j] += learning_rate * rule_error * rule_activations[i] * (1 - rule_activations[i]) * x[j]
rules[i, -1] += learning_rate * rule_error * rule_activations[i] * (1 - rule_activations[i])
# Update model parameters
self.params['rules'] = rules
self.params['output_weights'] = output_weights
```
在这个代码中,我们定义了一个FuzzyNeuralNetwork类来实现自适应模糊神经网络。该类的构造函数需要输入数据的维度、输出数据的维度和规则的数量。params字典包含神经网络的所有参数,包括规则和输出权重。sigmoid函数用于实现激活函数。forward函数输入一个数据点,并输出相应的模型预测。train函数用于训练模型。它需要输入一个数据点和相应的标签,并使用梯度下降算法更新模型参数。
希望这可以帮助你开发自适应模糊神经网络!
阅读全文