self.image_paths = sorted(os.listdir(os.path.join(root_dir, "images")))
时间: 2024-05-29 09:15:08 浏览: 140
这行代码是在一个Python程序中,它首先使用`os.path.join()`函数将`root_dir`与`"images"`拼接起来,形成一个含有图片文件的目录的路径。然后,`os.listdir()`函数列出了该目录下的所有文件和文件夹,返回一个列表。这个列表中的文件名是无序的,因此使用`sorted()`函数对它们进行排序,最终把排好序的文件名列表赋值给`self.image_paths`。这个变量可能是一个类的属性,它记录了所有图片文件的路径。
相关问题
class PairDataset(BaseDataset): def initialize(self, opt): self.opt = opt self.root = opt.dataroot self.dir_A = os.path.join(opt.dataroot, opt.phase + 'A') self.dir_B = os.path.join(opt.dataroot, opt.phase + 'B') self.A_paths = make_dataset(self.dir_A) self.B_paths = make_dataset(self.dir_B) self.A_paths = sorted(self.A_paths) self.B_paths = sorted(self.B_paths) self.A_size = len(self.A_paths) self.B_size = len(self.B_paths)
这段代码定义了一个名为`PairDataset`的类,该类继承自`BaseDataset`。该类用于处理配对数据集,其中包含两个文件夹A和B,分别存储了配对数据的两个部分。
在`initialize`方法中,首先将传入的参数`opt`保存在实例变量`self.opt`中。然后,使用`os.path.join`方法将数据根目录`opt.dataroot`与阶段名称`opt.phase`和后缀A或B连接起来,得到文件夹A和B的路径。
接下来,使用`make_dataset`函数获取文件夹A和B中的文件路径,并分别保存在`self.A_paths`和`self.B_paths`中。
为了保证数据的有序性,使用`sorted`函数对文件路径进行排序。
最后,通过获取`self.A_paths`和`self.B_paths`的长度,得到文件夹A和B中的数据数量,并分别保存在`self.A_size`和`self.B_size`中。
class Dataset(torch.utils.data.Dataset): def __init__(self, root): self.root = root if not os.path.exists(self.root): raise Exception("[!] {} not exists.".format(root)) #sort file names self.input_paths = sorted(glob(os.path.join(self.root, '{}/*_train.npy'.format("GB_data/Real/noise_data/"+Noise+"/train_data")))) self.label_paths = sorted(glob(os.path.join(self.root, '{}/*_lab.npy'.format("GB_data/Real/noise_data/"+Noise+"/train_lab")))) self.name = os.path.basename(root) #print(self.input_paths) #print(self.label_paths) if len(self.input_paths) == 0 or len(self.label_paths) == 0: raise Exception("No signal/labels are found in {}".format(self.root))这段代码的详细意思
这段代码定义了一个名为 Dataset 的类,继承了 PyTorch 中的 Dataset 类,并定义了类的构造函数 `__init__`。该构造函数接受一个参数 `root`,表示数据集的根目录。
在构造函数中,首先判断根目录是否存在,如果不存在则抛出异常。然后通过 `glob` 函数和 `os.path.join` 函数获取输入数据和标签数据的文件路径,并按照文件名排序,将排序后的路径存储在 `self.input_paths` 和 `self.label_paths` 中。其中,输入数据文件名以 `_train.npy` 结尾,标签数据文件名以 `_lab.npy` 结尾。
接着,获取数据集的名称,使用 `os.path.basename` 函数获取根目录的最后一级目录名,并将其赋值给类的属性 `name`。
最后,判断输入数据集和标签数据集是否为空,如果为空则抛出异常。
阅读全文