使用kaggle的猫狗数据集,采用CNN和VGG两种模型进行分类训练,给出Python代码和相应的注释,要求使用cnn准确率高于90%,使用vgg准确率高于95%
时间: 2024-02-23 16:59:07 浏览: 144
好的,以下是针对猫狗数据集的CNN和VGG模型分类训练的Python代码和注释:
首先,我们需要导入必要的库和模块,包括numpy、pandas、matplotlib等用于数据处理和可视化的库,以及keras、tensorflow等用于深度学习的框架库:
```python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator
from keras.applications.vgg16 import VGG16
from keras.callbacks import EarlyStopping, ModelCheckpoint
import tensorflow as tf
```
接下来,我们需要读取数据集,将数据集分为训练集和测试集,并对数据进行预处理,包括图像大小调整、像素值归一化等操作:
```python
# 读取数据集
train_dir = 'path/to/train/dir'
test_dir = 'path/to/test/dir'
train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(train_dir, target_size=(224, 224), batch_size=32, class_mode='binary')
test_generator = test_datagen.flow_from_directory(test_dir, target_size=(224, 224), batch_size=32, class_mode='binary')
# 图像大小调整、像素值归一化等预处理操作
train_datagen = ImageDataGenerator(rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(train_dir, target_size=(224, 224), batch_size=32, class_mode='binary')
test_generator = test_datagen.flow_from_directory(test_dir, target_size=(224, 224), batch_size=32, class_mode='binary')
```
接下来,我们需要定义CNN模型,包括卷积层、池化层、全连接层等网络结构:
```python
# 定义CNN模型
model = Sequential()
model.add(Conv2D(32, (3,3), activation='relu', input_shape=(224, 224, 3)))
model.add(MaxPooling2D((2,2)))
model.add(Conv2D(64, (3,3), activation='relu'))
model.add(MaxPooling2D((2,2)))
model.add(Conv2D(128, (3,3), activation='relu'))
model.add(MaxPooling2D((2,2)))
model.add(Conv2D(256, (3,3), activation='relu'))
model.add(MaxPooling2D((2,2)))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.summary()
```
然后,我们需要编译CNN模型,包括定义优化器、损失函数和评价指标等:
```python
# 编译CNN模型
model.compile(optimizer=Adam(lr=0.0001), loss='binary_crossentropy', metrics=['accuracy'])
```
接下来,我们需要训练CNN模型,包括定义训练参数、设置早停策略、设置回调函数等:
```python
# 训练CNN模型
history = model.fit_generator(train_generator, steps_per_epoch=100, epochs=50, validation_data=test_generator, validation_steps=50, callbacks=[EarlyStopping(patience=3), ModelCheckpoint('best_model.h5', save_best_only=True, save_weights_only=False)])
```
接下来,我们需要定义VGG模型,包括预训练模型VGG16、全连接层等网络结构:
```python
# 定义VGG模型
vgg = VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
for layer in vgg.layers:
layer.trainable = False
model = Sequential()
model.add(vgg)
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.summary()
```
然后,我们需要编译VGG模型,包括定义优化器、损失函数和评价指标等:
```python
# 编译VGG模型
model.compile(optimizer=Adam(lr=0.0001), loss='binary_crossentropy', metrics=['accuracy'])
```
接下来,我们需要训练VGG模型,包括定义训练参数、设置早停策略、设置回调函数等:
```python
# 训练VGG模型
history = model.fit_generator(train_generator, steps_per_epoch=100, epochs=50, validation_data=test_generator, validation_steps=50, callbacks=[EarlyStopping(patience=3), ModelCheckpoint('best_model.h5', save_best_only=True, save_weights_only=False)])
```
最后,我们可以绘制训练过程中的损失和准确率曲线,并输出模型在测试集上的准确率:
```python
# 绘制训练过程中的损失和准确率曲线
plt.plot(history.history['loss'], label='train_loss')
plt.plot(history.history['val_loss'], label='val_loss')
plt.plot(history.history['accuracy'], label='train_acc')
plt.plot(history.history['val_accuracy'], label='val_acc')
plt.legend()
plt.show()
# 输出模型在测试集上的准确率
model.load_weights('best_model.h5')
test_loss, test_acc = model.evaluate_generator(test_generator, steps=50)
print('Test accuracy:', test_acc)
```
希望这份代码和注释对你有所帮助!
阅读全文