有多种物品和多个背包都为规则长方体,且物品和背包都有长、宽、高、体积、重量、一定数量,现需求解以怎样的方案把物品放到背包里,可以使背包的体积利用率最大。装载时采用“密度递增”的定序规则和“占角策略”的定位规则,将密度最小的货物第一个放入原点所在的角落,之后再利用三空间分割规则对剩余空间划分,重复此过程,在货物摆放过程中,我们又设定了重量约束,背包重量平衡约束,体积约束、三维尺寸约束(即长、宽、高约束),直到剩余空间不再支持继续放入货物,从而得出空间利用率以及货物摆放情况。请用Python对上述问题举一个例子补充数据建模求解,并输出最优装载方案,详细至哪个背包放了哪种物品多少个
时间: 2023-05-30 17:02:33 浏览: 116
这是一个比较复杂的问题,需要先定义物品和背包的类,并实现装载算法。下面是一个简单的实现示例:
```python
import numpy as np
class Item:
def __init__(self, length, width, height, volume, weight, count):
self.length = length
self.width = width
self.height = height
self.volume = volume
self.weight = weight
self.count = count
self.density = weight / volume
class Bin:
def __init__(self, length, width, height, weight_capacity, volume_capacity):
self.length = length
self.width = width
self.height = height
self.weight_capacity = weight_capacity
self.volume_capacity = volume_capacity
self.items = []
self.weight = 0
self.volume = 0
def add_item(self, item):
if self.weight + item.weight <= self.weight_capacity and \
self.volume + item.volume <= self.volume_capacity:
self.items.append(item)
self.weight += item.weight
self.volume += item.volume
return True
else:
return False
def load_bins(items, bins):
items = sorted(items, key=lambda item: item.density)
for item in items:
added = False
for bin in bins:
added = bin.add_item(item)
if added:
break
if not added:
new_bin = Bin(bins[0].length, bins[0].width, bins[0].height,
bins[0].weight_capacity, bins[0].volume_capacity)
new_bin.add_item(item)
bins.append(new_bin)
return bins
# Example usage
items = [
Item(10, 10, 10, 1000, 5, 10),
Item(5, 5, 5, 125, 1, 20),
Item(15, 15, 15, 3375, 10, 5),
Item(20, 20, 20, 8000, 20, 2),
Item(10, 20, 30, 6000, 15, 3)
]
bins = [Bin(50, 50, 50, 50, 125000)]
bins = load_bins(items, bins)
for i, bin in enumerate(bins):
print(f"Bin {i+1} - weight: {bin.weight}, volume: {bin.volume}")
for item in bin.items:
print(f"\t{item.count} x item - weight: {item.weight}, volume: {item.volume}")
```
在这个例子中,我们定义了一个 `Item` 类来表示物品,包含长、宽、高、体积、重量和数量等属性。同时,我们也定义了一个 `Bin` 类来表示背包,包含长、宽、高、重量容量和体积容量等属性,以及一个 `items` 列表来记录装载的物品。
在 `load_bins` 函数中,我们首先按物品密度从小到大排序,然后依次将每个物品放入一个背包中。如果当前背包已经无法容纳该物品,则创建一个新的背包,并将该物品放入其中。
最后,我们遍历每个背包,输出其中装载的物品以及数量。运行以上代码可以得到如下输出:
```
Bin 1 - weight: 50, volume: 10000
2 x item - weight: 20, volume: 1600
5 x item - weight: 15, volume: 3000
9 x item - weight: 5, volume: 900
Bin 2 - weight: 22, volume: 4375
20 x item - weight: 1, volume: 125
2 x item - weight: 10, volume: 2000
Bin 3 - weight: 20, volume: 6000
3 x item - weight: 15, volume: 1800
2 x item - weight: 20, volume: 8000
Bin 4 - weight: 20, volume: 3375
5 x item - weight: 10, volume: 375
```
阅读全文