java中判断一个状态大于0,不进行添加操作的代码
时间: 2023-07-16 18:17:03 浏览: 109
可以使用以下代码进行判断:
```java
int state = 5; // 假设状态为5
if(state > 0) {
// 执行添加操作
// ...
} else {
// 不执行添加操作,可以进行其他操作或者直接返回
// ...
}
```
其中,`state` 为需要判断的状态变量,如果其大于0,则执行添加操作,否则不执行添加操作并可以进行其他操作或者直接返回。
相关问题
利用org.apache.java进行无状态流计算,要求判断从kafka读入的字段longitude对应的数值大于30的个数,并输出给postgresql保存
以下是一个利用Flink实现无状态流计算的示例代码,可以实现从Kafka读取数据,判断某个字段是否大于指定数值,并将结果保存到PostgreSQL数据库中。
```java
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.util.Collector;
import java.util.Properties;
public class FlinkKafkaToPostgreSQL {
private static final String KAFKA_TOPIC = "test-topic";
private static final String KAFKA_BOOTSTRAP_SERVERS = "localhost:9092";
private static final String POSTGRESQL_URL = "jdbc:postgresql://localhost/testdb";
private static final String POSTGRESQL_USERNAME = "testuser";
private static final String POSTGRESQL_PASSWORD = "testpass";
public static void main(String[] args) throws Exception {
// 创建 Flink 流式处理环境
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 配置 Kafka 消费者属性
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", KAFKA_BOOTSTRAP_SERVERS);
properties.setProperty("group.id", "flink-kafka-consumer");
// 创建 Kafka 消费者
FlinkKafkaConsumer<String> kafkaConsumer = new FlinkKafkaConsumer<>(KAFKA_TOPIC, new SimpleStringSchema(), properties);
// 添加 Kafka 数据源到流处理环境
DataStream<String> kafkaStream = env.addSource(kafkaConsumer);
// 对 Kafka 数据流进行处理,统计 longitude 大于 30 的个数
DataStream<Tuple2<String, Integer>> resultStream = kafkaStream.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
@Override
public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {
String[] fields = value.split(",");
if (fields.length >= 2 && Double.parseDouble(fields[1]) > 30) {
out.collect(new Tuple2<>("count", 1));
}
}
}).keyBy(0).sum(1);
// 将结果保存到 PostgreSQL 数据库
resultStream.addSink(new PostgresSink(POSTGRESQL_URL, POSTGRESQL_USERNAME, POSTGRESQL_PASSWORD));
// 执行 Flink 流式处理任务
env.execute("FlinkKafkaToPostgreSQL");
}
}
```
需要注意的是,上述示例代码中的`PostgresSink`是需要自己实现的,可以参考以下代码:
```java
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.SQLException;
import java.util.List;
import org.apache.flink.api.common.functions.RuntimeContext;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.apache.flink.streaming.api.functions.sink.SinkFunction;
import org.apache.flink.types.Row;
public class PostgresSink extends RichSinkFunction<Tuple2<String, Integer>> {
private final String url;
private final String username;
private final String password;
private Connection connection;
private PreparedStatement preparedStatement;
public PostgresSink(String url, String username, String password) {
this.url = url;
this.username = username;
this.password = password;
}
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
connection = DriverManager.getConnection(url, username, password);
preparedStatement = connection.prepareStatement("INSERT INTO result (name, value) VALUES (?, ?)");
}
@Override
public void close() throws Exception {
super.close();
if (preparedStatement != null) {
preparedStatement.close();
}
if (connection != null) {
connection.close();
}
}
@Override
public void invoke(Tuple2<String, Integer> value, Context context) throws Exception {
try {
preparedStatement.setString(1, value.f0);
preparedStatement.setInt(2, value.f1);
preparedStatement.executeUpdate();
} catch (SQLException e) {
e.printStackTrace();
}
}
}
```
需要注意的是,上述代码中的`result`表需要自己先创建好,包含`name`和`value`两个字段。
阅读全文