卡尔曼滤波 C语言实现
时间: 2023-10-11 21:11:56 浏览: 76
卡尔曼滤波是一种常见的估计方法,用于从有噪声的测量值中估计出真实值。它通常被用于机器人、导航和控制系统等领域。
以下是一个简单的 C 语言实现。假设我们要估计一个物体的位置和速度。我们可以定义状态向量 x,测量向量 z,以及状态转移矩阵 F 和测量矩阵 H。初始化协方差矩阵 P 和过程噪声 Q,以及测量噪声 R。
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define NUM_STATES 2 // x, x'
#define NUM_MEASUREMENTS 1 // x
void kalman_filter(float z, float dt);
// state vector
float x[NUM_STATES] = {0.0, 0.0}; // x, x'
// state transition matrix
float F[NUM_STATES][NUM_STATES] = {
{1.0, dt},
{0.0, 1.0}
};
// measurement matrix
float H[NUM_MEASUREMENTS][NUM_STATES] = {
{1.0, 0.0}
};
// covariance matrix
float P[NUM_STATES][NUM_STATES] = {
{1.0, 0.0},
{0.0, 1.0}
};
// process noise covariance matrix
float Q[NUM_STATES][NUM_STATES] = {
{0.01, 0.0},
{0.0, 0.01}
};
// measurement noise covariance matrix
float R[NUM_MEASUREMENTS][NUM_MEASUREMENTS] = {
{0.1}
};
int main()
{
float z = 1.0; // measurement
float dt = 0.1; // time step
for (int i = 0; i < 10; i++) {
kalman_filter(z, dt);
}
return 0;
}
void kalman_filter(float z, float dt)
{
// prediction step
float x_pred[NUM_STATES] = {0.0};
float P_pred[NUM_STATES][NUM_STATES] = {0.0};
for (int i = 0; i < NUM_STATES; i++) {
for (int j = 0; j < NUM_STATES; j++) {
x_pred[i] += F[i][j] * x[j];
for (int k = 0; k < NUM_STATES; k++) {
P_pred[i][j] += F[i][k] * P[k][j] * F[j][k];
}
}
}
// update step
float K[NUM_STATES][NUM_MEASUREMENTS] = {0.0};
float S[NUM_MEASUREMENTS][NUM_MEASUREMENTS] = {0.0};
for (int i = 0; i < NUM_MEASUREMENTS; i++) {
for (int j = 0; j < NUM_STATES; j++) {
S[i][i] += H[i][j] * P_pred[j][i] * H[i][j];
}
S[i][i] += R[i][i];
}
float S_inv[NUM_MEASUREMENTS][NUM_MEASUREMENTS] = {0.0};
float det_S = S[0][0];
if (NUM_MEASUREMENTS > 1) {
det_S = S[0][0] * S[1][1] - S[0][1] * S[1][0];
S_inv[0][0] = S[1][1] / det_S;
S_inv[0][1] = -S[0][1] / det_S;
S_inv[1][0] = -S[1][0] / det_S;
S_inv[1][1] = S[0][0] / det_S;
} else {
S_inv[0][0] = 1.0 / det_S;
}
for (int i = 0; i < NUM_STATES; i++) {
for (int j = 0; j < NUM_MEASUREMENTS; j++) {
for (int k = 0; k < NUM_STATES; k++) {
K[i][j] += P_pred[i][k] * H[j][k];
}
K[i][j] *= S_inv[j][j];
x[i] = x_pred[i] + K[i][j] * (z - H[j][0] * x_pred[0]);
if (NUM_MEASUREMENTS > 1) {
P[i][j] = (1.0 - K[i][j] * H[j][0]) * P_pred[i][j];
} else {
P[i][j] = (1.0 - K[i][j] * H[j][0]) * P_pred[i][j] + Q[i][i];
}
}
}
}
```
在 main 函数中,我们初始化测量值 z 和时间步长 dt,并在 for 循环中调用 kalman_filter 函数进行卡尔曼滤波,共迭代 10 次。在 kalman_filter 函数中,我们首先进行预测步骤,计算出状态向量和协方差矩阵的预测值。接着进行更新步骤,计算出卡尔曼增益和测量噪声协方差矩阵,然后更新状态向量和协方差矩阵。
这只是一个简单的卡尔曼滤波实现,实际应用中可能需要更复杂的模型和参数调整。
阅读全文