在hadoop3版本下使用IDEA进行MapReduce编程
时间: 2024-03-19 10:44:41 浏览: 235
在Hadoop 3.x版本下使用IDEA进行MapReduce编程,步骤如下:
1. 配置Hadoop环境
在IDEA的项目中,需要配置Hadoop环境变量。在项目目录下创建一个lib目录,将hadoop的相关jar包放入其中。在IDEA的Project Structure中,选择Libraries,点击“+”号添加hadoop的jar包。
2. 创建Maven项目
在IDEA中创建一个Maven项目,并在pom.xml中添加hadoop的依赖:
```xml
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>3.2.1</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>3.2.1</version>
</dependency>
</dependencies>
```
3. 编写MapReduce程序
创建一个Java类,实现Mapper和Reducer接口,并编写MapReduce程序。例如,创建一个WordCount程序:
```java
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
public static class TokenizerMapper extends Mapper<LongWritable, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
```
4. 运行MapReduce程序
在IDEA中,选择Run -> Edit Configurations,设置好Main class、Program arguments等参数。然后点击Run按钮,就可以运行MapReduce程序了。
以上就是在Hadoop 3.x版本下使用IDEA进行MapReduce编程的步骤。
阅读全文
相关推荐
















