train_predict = model.predict(X_train) test_predict = model.predict(X_test) train_predict = scaler.inverse_transform(train_predict) y_train = scaler.inverse_transform([y_train]) test_predict = scaler.inverse_transform(test_predict) y_test = scaler.inverse_transform([y_test]) plt.plot(y_train, label='train') plt.plot(train_predict, label='train predict') plt.plot(y_test, label='test') plt.plot(test_predict, label='test predict') plt.legend() plt.show()报错Traceback (most recent call last): File "C:\Users\马斌\Desktop\cnn测试\cnn改.py", line 48, in <module> train_predict = scaler.inverse_transform(train_predict) File "D:\python\python3.9.5\pythonProject\venv\lib\site-packages\sklearn\preprocessing\_data.py", line 541, in inverse_transform X -= self.min_ ValueError: non-broadcastable output operand with shape (110,1) doesn't match the broadcast shape (110,4)
时间: 2024-01-27 12:03:31 浏览: 124
这个错误通常是由于数组形状不兼容而导致的。在您的代码中,似乎您正在尝试将形状为(110,1)的数组与形状为(110,4)的数组进行广播操作,从而导致此错误。
您可以尝试使用 `reshape()` 方法来重新调整数组的形状,以确保它们具有兼容的形状。例如,如果您想将形状为(110,1)的数组转换为形状为(110,4)的数组,可以使用以下代码:
```python
train_predict = np.tile(train_predict, (1, 4))
```
这将使用 `tile()` 函数将 `train_predict` 数组沿列方向复制 4 次,以便它的形状变为(110,4)。然后,您可以再次尝试执行广播操作。
相关问题
# make predictions train_predict = model.predict(X_train) test_predict = model.predict(X_test) # invert predictions train_predict = scaler.inverse_transform(train_predict) Y_train = scaler.inverse_transform([Y_train]) test_predict = scaler.inverse_transform(test_predict) Y_test = scaler.inverse_transform([Y_test])
这段代码是用于进行模型预测并反向缩放预测结果的过程:
1. 使用已经训练好的LSTM模型对训练集和测试集进行预测,得到预测结果train_predict和test_predict。
2. 将train_predict和test_predict中的数值反向缩放回原始数值范围,得到反向缩放后的train_predict和test_predict。
3. 同样地,将Y_train和Y_test也反向缩放回原始数值范围,得到反向缩放后的Y_train和Y_test。注意,这里需要将Y_train和Y_test转换成列表类型,然后再进行反向缩放。
import pandas as pd import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense data = pd.read_csv('车辆:274序:4结果数据.csv') x = data[['车头间距', '原车道前车速度']].values y = data['本车速度'].values train_size = int(len(x) * 0.7) test_size = len(x) - train_size x_train, x_test = x[0:train_size,:], x[train_size:len(x),:] y_train, y_test = y[0:train_size], y[train_size:len(y)] from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler(feature_range=(0, 1)) x_train = scaler.fit_transform(x_train) x_test = scaler.transform(x_test) model = Sequential() model.add(LSTM(50, input_shape=(2, 1))) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') history = model.fit(x_train.reshape(-1, 2, 1), y_train, epochs=100, batch_size=32, validation_data=(x_test.reshape(-1, 2, 1), y_test)) plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper right') plt.show() train_predict = model.predict(x_train.reshape(-1, 2, 1)) test_predict = model.predict(x_test.reshape(-1, 2, 1)) train_predict = scaler.inverse_transform(train_predict) train_predict = train_predict.reshape(-1, 1) y_train = scaler.inverse_transform([y_train]) test_predict = scaler.inverse_transform(test_predict) y_test = scaler.inverse_transform([y_test]) plt.plot(y_train[0], label='train') plt.plot(train_predict[:,0], label='train predict') plt.plot(y_test[0], label='test') plt.plot(test_predict[:,0], label='test predict') plt.legend() plt.show()
这段代码是使用LSTM神经网络模型对车辆速度进行预测的例子。它首先读取了一个名为"车辆:274序:4结果数据.csv"的数据集文件,然后使用pandas库将其转换为DataFrame格式。接下来,它将数据集分为训练集和测试集,并使用MinMaxScaler进行归一化处理。然后,它使用Sequential模型创建了一个LSTM层和一个Dense层的神经网络模型,并使用均方误差作为损失函数和Adam优化器进行训练。训练过程中,它使用了100个epochs和32个batch size。最后,它使用模型对训练集和测试集进行预测,并使用反向转换将预测结果还原到原始比例。最后,它使用matplotlib库绘制了训练集和测试集的实际速度和预测速度之间的比较图。
阅读全文