val sc: SparkContext = spark.sparkContext
时间: 2024-03-15 08:43:07 浏览: 64
这段代码是Scala语言中的一段Spark代码,它的功能是创建一个`SparkContext`对象,用于连接Spark集群并进行数据处理。具体解释如下:
1. `val sc: SparkContext =`:定义了一个名为`sc`的`SparkContext`对象,并将其初始化为`spark.sparkContext`,即使用`SparkSession`对象`spark`的`sparkContext`属性创建一个新的`SparkContext`对象。
2. `spark.sparkContext`:获取`SparkSession`对象的`sparkContext`属性,即`SparkContext`对象,用于连接Spark集群并进行数据处理。
总之,这段代码是创建一个`SparkContext`对象,用于连接Spark集群并进行数据处理,其中`SparkContext`是Spark框架中的核心类之一,用于提供Spark应用程序的所有基本功能,例如创建RDD、分布式数据处理、部署和配置Spark集群等。需要注意的是,`SparkSession`对象已经包含了一个`SparkContext`对象,因此在使用`SparkSession`时,不需要再创建一个新的`SparkContext`对象。
相关问题
val sc: SparkContext = session.sparkContext
这段代码是在 Scala 中使用 Apache Spark 框架创建 SparkContext 对象的示例。SparkContext 是 Apache Spark 中的主要入口点,它负责与 Spark 集群进行通信,并可以用来创建 RDD、累加器和广播变量等。session 是一个 SparkSession 对象,它已经封装了 SparkContext,因此可以通过 session 直接获取 SparkContext 对象。在创建 SparkContext 对象时,需要指定应用程序名称和运行模式,例如:
```
val conf = new SparkConf().setAppName("MyApp").setMaster("local[*]")
val sc = new SparkContext(conf)
```
这里的应用程序名称为 "MyApp",运行模式为本地模式,使用所有可用的 CPU 核心。如果要连接到远程 Spark 集群,需要将 "local[*]" 替换为 Spark 集群的 URL。
package org.zkpk.lab import org.apache.spark.SparkContext import org.apache.spark.SparkConf import org.apache.spark.rdd.RDD import org.apache.spark.sql.SQLContext object sale_drug { case class Sale(cardId:String,productId:Int,productName:String ,quantity:Int,money:Double) def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("Pharmacy Sales Analysis").setMaster("local") val sc = new SparkContext(conf) sc.setLogLevel("ERROR") val sqlContext = new SQLContext(sc) // load data val data = sc.textFile("/home/zkpk/saledata.txt") // parse data val salesRDD: RDD[Sale] = data.map(line => line.split(" ")).map(arr => Sale(arr(0).toString, arr(1).toInt, arr(2).toString, arr(3).toInt, arr(4).toDouble)) import sqlContext.implicits._ val df = salesRDD.toDF() val nameMoneyDF = df.select("productName","money") nameMoneyDF.show()报错:java.lang.ArrayIndexOutOfBoundsException: 1
根据你提供的代码和错误信息,可以看出问题出在以下这个行代码:
```
val salesRDD: RDD[Sale] = data.map(line => line.split(" ")).map(arr => Sale(arr(0).toString, arr(1).toInt, arr(2).toString, arr(3).toInt, arr(4).toDouble))
```
这个错误是由于你的 `line.split(" ")` 返回的数组长度不够,导致在构造 `Sale` 对象时访问了一个不存在的数组下标。你需要检查你的数据文件,确保数据格式正确,每行数据都包含了五个字段。你可以在代码中添加一些容错机制来处理这种情况,例如使用 `getOrElse` 方法来访问数组元素,或者使用 `try-catch` 来捕获异常。
阅读全文