> for(i in 1:3) print(adfTest(rate,lag=i,type="c")) Title: Augmented Dickey-Fuller Test Test Results: PARAMETER: Lag Order: 1 STATISTIC: Dickey-Fuller: 1.7321 P VALUE: 0.99 Description: Wed May 10 22:16:45 2023 by user: gaofangsheng Title: Augmented Dickey-Fuller Test Test Results: PARAMETER: Lag Order: 2 STATISTIC: Dickey-Fuller: -1.7321 P VALUE: 0.413 Description: Wed May 10 22:16:45 2023 by user: gaofangsheng Title: Augmented Dickey-Fuller Test Test Results: PARAMETER: Lag Order: 3 STATISTIC: Dickey-Fuller: -1.7321 P VALUE: 0.413 Description: Wed May 10 22:16:45 2023 by user: gaofangsheng Warning messages: 1: In adfTest(rate, lag = i, type = "c") : p-value greater than printed p-value 2: In summary.lm(res) : essentially perfect fit: summary may be unreliable这段代码在干嘛
时间: 2023-06-15 11:07:15 浏览: 165
这段代码使用了R语言中的adfTest函数,进行了三次单位根检验,检验了一个名为“rate”的时间序列数据在不同滞后阶数下是否具有单位根。其中,第一次检验的滞后阶数为1,第二次为2,第三次为3。检验结果包括检验统计量和p值,以及当前时间和用户信息的描述。同时,还有两条警告信息,第一条警告信息表明p值大于已输出的p值,第二条警告信息表明回归模型拟合效果极好,可能导致摘要结果不可靠。
相关问题
Augmented Dickey-Fuller Test alternative: stationary Type 1: no drift no trend lag ADF p.value [1,] 0 -0.707 0.416 [2,] 1 -0.577 0.462 [3,] 2 -1.190 0.245 Type 2: with drift no trend lag ADF p.value [1,] 0 -0.910 0.714 [2,] 1 -0.508 0.853 [3,] 2 0.116 0.959 Type 3: with drift and trend lag ADF p.value [1,] 0 -2.04 0.539 [2,] 1 -2.62 0.325 [3,] 2 -1.30 0.837 ---- Note: in fact, p.value = 0.01 means p.value <= 0.01
这段文本描述了针对某个时间序列做了几个 Augmented Dickey-Fuller (ADF) Test。ADF Test 是一种用于检验时间序列是否平稳的统计方法,它的原假设是时间序列不平稳,备择假设是时间序列平稳。通过输出结果,我们可以看到在三种不同类型的 ADF Test 中,每种类型都使用了不同的假设条件和参数。而每个 ADF Test 的输出结果中包含了测试所用的滞后阶数(lag)、ADF 统计量(ADF)和 P 值(p.value)。需要注意的是,当 p.value 小于或等于 0.01 时,我们认为该时间序列是平稳的。
D:\ZBY\ZBYQT\VarTst\main.cpp:41: error: cannot convert 'const Eigen::Product<Eigen::CwiseBinaryOp<Eigen::internal::scalar_product_op<double, double>, const Eigen::CwiseNullaryOp<Eigen::internal::scalar_constant_op<double>, const Eigen::Matrix<double, -1, -1> >, const Eigen::Block<Eigen::Matrix<double, -1, -1>, -1, -1, false> >, Eigen::Block<Eigen::Matrix<double, -1, 1>, -1, 1, false>, 0>' to 'Eigen::DenseCoeffsBase<Eigen::Matrix<double, -1, 1>, 1>::Scalar {aka double}' in assignment y_new(i) = Y(Y.rows() - 1, 0) * X.block(X.rows() - k + i - 1, 0, 1, Y.cols()) * beta.segment(i * Y.cols(), Y.cols()); ^
这个错误是由于类型不匹配导致的,原因是在计算y_new时,表达式的类型被推断为一个Eigen Product对象,而不能直接赋值给y_new的元素,需要通过调用Product的value()方法来获取结果。下面是修改后的代码:
```c++
#include <iostream>
#include <vector>
#include <Eigen/Dense> //需要Eigen库支持
using namespace std;
using namespace Eigen;
int main() {
//数据准备
vector<vector<double>> data = {{1.0, 2.0, 3.0}, {4.0, 5.0, 6.0}, {7.0, 8.0, 9.0}, {10.0, 11.0, 12.0}}; //4个时间点,3个变量
//将数据转化为Eigen矩阵
MatrixXd X(data.size(), data[0].size());
for(int i = 0; i < data.size(); i++) {
for(int j = 0; j < data[0].size(); j++) {
X(i, j) = data[i][j];
}
}
//VAR模型拟合
int k = 3; //时间滞后期数
MatrixXd Y = X.block(k, 0, X.rows() - k, X.cols()); //因变量矩阵
MatrixXd X_lag(k * Y.rows(), Y.cols() * (k + 1)); //滞后变量矩阵
for(int i = 0; i < Y.rows(); i++) {
for(int j = 0; j <= k; j++) {
if(j == 0) {
X_lag.block(i * k, j * Y.cols(), k, Y.cols()) = MatrixXd::Identity(k, Y.cols()) * Y(i, 0);
} else {
X_lag.block(i * k, j * Y.cols(), k, Y.cols()) = Y.block(i, 0, 1, Y.cols()) * X.block(i + k - j, 0, 1, Y.cols());
}
}
}
VectorXd beta = (X_lag.transpose() * X_lag).inverse() * X_lag.transpose() * Y.col(0); //回归系数
//预测
VectorXd y_new(k);
for(int i = 0; i < k; i++) {
if(i == 0) {
y_new(i) = beta(0);
} else {
y_new(i) = (Y.row(Y.rows() - 1) * X.block(X.rows() - k + i - 1, 0, 1, Y.cols()).transpose() * beta.segment(i * Y.cols(), Y.cols())).value();
}
}
//输出结果
cout << "Coefficients: " << beta.transpose() << endl;
cout << "Predicted values: " << y_new.transpose() << endl;
return 0;
}
```
在这个修改后的代码中,我们使用了Product对象的value()方法来获取表达式的结果,并将其赋值给y_new的元素。
阅读全文