粒子群算法优化支持向量机matlab代码
时间: 2023-06-30 14:05:00 浏览: 116
粒子群算法优化支持向量机分类MATLAB代码
5星 · 资源好评率100%
以下是粒子群算法优化支持向量机的 Matlab 代码示例:
首先,我们需要准备一些数据集并将其划分为训练集和测试集:
```matlab
% 准备数据
load fisheriris
X = meas(:,1:2);
Y = species;
Y = grp2idx(Y);
trainRatio = 0.7;
c = cvpartition(Y,'HoldOut',trainRatio);
Xtrain = X(c.training,:);
Ytrain = Y(c.training,:);
Xtest = X(c.test,:);
Ytest = Y(c.test,:);
```
然后,我们可以使用 PSO 优化 SVM 的参数:
```matlab
% PSO 优化 SVM 参数
options = optimoptions('particleswarm','MaxIterations',50);
lb = [1e-6,1e-6];
ub = [1e6,1e6];
fun = @(c)svmtrain(Ytrain,Xtrain,sprintf('-c %f -g %f -q',c(1),c(2)));
[c_opt,~] = particleswarm(fun,2,lb,ub,options);
```
最后,我们可以使用优化得到的参数训练 SVM 模型并进行预测:
```matlab
% 训练 SVM 模型
model = svmtrain(Ytrain,Xtrain,sprintf('-c %f -g %f -q',c_opt(1),c_opt(2)));
% 预测测试集并计算准确率
[predict_label, accuracy, prob_estimates] = svmpredict(Ytest, Xtest, model);
disp(accuracy(1))
```
完整的代码示例如下:
```matlab
% 准备数据
load fisheriris
X = meas(:,1:2);
Y = species;
Y = grp2idx(Y);
trainRatio = 0.7;
c = cvpartition(Y,'HoldOut',trainRatio);
Xtrain = X(c.training,:);
Ytrain = Y(c.training,:);
Xtest = X(c.test,:);
Ytest = Y(c.test,:);
% PSO 优化 SVM 参数
options = optimoptions('particleswarm','MaxIterations',50);
lb = [1e-6,1e-6];
ub = [1e6,1e6];
fun = @(c)svmtrain(Ytrain,Xtrain,sprintf('-c %f -g %f -q',c(1),c(2)));
[c_opt,~] = particleswarm(fun,2,lb,ub,options);
% 训练 SVM 模型
model = svmtrain(Ytrain,Xtrain,sprintf('-c %f -g %f -q',c_opt(1),c_opt(2)));
% 预测测试集并计算准确率
[predict_label, accuracy, prob_estimates] = svmpredict(Ytest, Xtest, model);
disp(accuracy(1))
```
注意:以上代码仅为示例,实际应用中需要根据具体问题进行调整和优化。
阅读全文