lambdas = np.arange(0, 10.1, 0.4) pipeline = Pipeline([ ('polynomial_features', PolynomialFeatures(degree=5)), ('ridge_regression', c.SGDLinearRegressor(batch_size=20, eta=0.01, tau_max=1000, epsilon=0.00001, random_state=42)) ])给这段代码加注释
时间: 2024-02-13 16:06:17 浏览: 62
pandas_sans_lambdas-0.1.1.tar.gz
以下是对这段代码的注释:
```python
import numpy as np
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures
import custom_module as c # 自定义模块
# 生成一个从 0 到 10(不含 10),步长为 0.4 的数组,作为 lambda 值
lambdas = np.arange(0, 10.1, 0.4)
# 定义一个 Pipeline,它包含两个步骤:
# 1. 对输入特征进行多项式扩展(degree=5)
# 2. 使用自定义模块 c 中的 SGDLinearRegressor 进行线性回归(batch_size=20, eta=0.01, tau_max=1000, epsilon=0.00001, random_state=42)
pipeline = Pipeline([
('polynomial_features', PolynomialFeatures(degree=5)),
('ridge_regression', c.SGDLinearRegressor(batch_size=20, eta=0.01, tau_max=1000, epsilon=0.00001, random_state=42))
])
```
阅读全文