stm32cubemx配置stm32f030k6的adc dma详细步骤及程序

时间: 2023-09-11 19:07:23 浏览: 48
下面是配置STM32F030K6 ADC DMA的详细步骤和程序: 1. 启用ADC和DMA模块 在STM32CubeMX中,选中你的工程文件,然后在右侧的“Pinout & Configuration”选项卡中选择“ADC”和“DMA”。在“ADC”下面将“ADC1”模块勾选,然后在“DMA”下面将“DMA1 Channel1”勾选。 2. 配置ADC模块 在“Configuration”选项卡中选择“ADC”模块。在“Configured Channels”中选择要使用的ADC通道,然后在“Regular Conversion Mode”下面选择采样时间和采样周期。在本例中,我们将使用ADC通道0。 3. 配置DMA模块 在“Configuration”选项卡中选择“DMA”模块。在“DMA Configuration”下面,将“DMA Request Settings”设置为“Peripheral to Memory”。在“Data Width”中选择“Half-Word”,因为ADC输出是12位,需要用两个字节来存储。在“Memory Increment Mode”和“Peripheral Increment Mode”中选择“Enabled”,以便在每次传输后自动递增内存地址和外设地址。 4. 生成代码 点击“GENERATE CODE”按钮生成代码。 5. 修改main.c文件 打开生成的main.c文件,并添加以下代码: ```c #include "main.h" #include "stm32f0xx_hal.h" ADC_HandleTypeDef hadc; DMA_HandleTypeDef hdma_adc; uint16_t adcValue[1]; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_DMA_Init(void); static void MX_ADC_Init(void); int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_DMA_Init(); MX_ADC_Init(); HAL_ADC_Start_DMA(&hadc, (uint32_t*)adcValue, 1); while (1) { // 这里可以添加其他代码 } } void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct; RCC_ClkInitTypeDef RCC_ClkInitStruct; __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } } static void MX_ADC_Init(void) { ADC_ChannelConfTypeDef sConfig; hadc.Instance = ADC1; hadc.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV1; hadc.Init.Resolution = ADC_RESOLUTION_12B; hadc.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc.Init.ScanConvMode = DISABLE; hadc.Init.EOCSelection = ADC_EOC_SINGLE_CONV; hadc.Init.LowPowerAutoWait = DISABLE; hadc.Init.ContinuousConvMode = DISABLE; hadc.Init.NbrOfConversion = 1; hadc.Init.DiscontinuousConvMode = DISABLE; hadc.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc.Init.DMAContinuousRequests = ENABLE; hadc.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN; hadc.Init.OversamplingMode = DISABLE; if (HAL_ADC_Init(&hadc) != HAL_OK) { Error_Handler(); } sConfig.Channel = ADC_CHANNEL_0; sConfig.Rank = ADC_RANK_CHANNEL_NUMBER; sConfig.SamplingTime = ADC_SAMPLETIME_13CYCLES_5; if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK) { Error_Handler(); } } static void MX_DMA_Init(void) { hdma_adc.Instance = DMA1_Channel1; hdma_adc.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_adc.Init.PeriphInc = DMA_PINC_DISABLE; hdma_adc.Init.MemInc = DMA_MINC_ENABLE; hdma_adc.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD; hdma_adc.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD; hdma_adc.Init.Mode = DMA_CIRCULAR; hdma_adc.Init.Priority = DMA_PRIORITY_LOW; if (HAL_DMA_Init(&hdma_adc) != HAL_OK) { Error_Handler(); } __HAL_LINKDMA(&hadc,DMA_Handle,hdma_adc); } void Error_Handler(void) { while(1) { } } #ifdef USE_FULL_ASSERT void assert_failed(uint8_t *file, uint32_t line) { } #endif ``` 6. 编译并下载 编译并下载程序到STM32F030K6开发板中。此时,ADC将开始采样并通过DMA将数据传输到内存中。 注意:在实际应用中,需要根据具体的需求对ADC采样时间和DMA传输模式进行调整。同时,需要根据具体的外设和接口进行相应的配置和连接。

相关推荐

最新推荐

recommend-type

CUBEMX-STM32F030学习笔记

学习STM32F030的笔记,详细的功能简介,简单原理,CUBE配置图片步骤,选项功能意义还有加入的功能代码。包括一些性能范围和实践经验值。
recommend-type

STM32CubeMX can总线配置

本资料是针对STM32CubeMX can总线配置,后附部分源代码,可以供初学者快速掌握CAN总线的配置
recommend-type

STM32定时器触发ADC +DMA

Stm32的ADC有DMA功能这都毋庸置疑,也是我们用的最多的!然而,如果我们要对一个信号(比如脉搏信号)进行定时采样(也就是隔一段时间,比如说2ms),有三种方法: 1、使用定时器中断每隔一定时间进行ADC转换,这样...
recommend-type

STM32F407 RTC 配置理解与总结

本文主要讲述作者对STM32F407的RTC配置的理解与总结,感兴趣的朋友可以看看。
recommend-type

关于STM32的I2C硬件DMA实现

网上看到很多说STM32的I2C很难用,但我觉得还是理解上的问题,STM32的I2C确实很复杂,但只要基础牢靠,并没有想象中的那么困难。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。