使用pytorch实现unet
时间: 2023-07-30 16:07:31 浏览: 198
好的,下面是一个使用PyTorch实现的简单的UNet模型。
首先,需要安装PyTorch库。可以使用以下命令进行安装:
```
pip install torch
```
然后,我们可以定义一个UNet模型。
```python
import torch
import torch.nn as nn
class DoubleConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(DoubleConv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.conv(x)
class Up(nn.Module):
def __init__(self, in_channels, out_channels):
super(Up, self).__init__()
self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)
self.conv = DoubleConv(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
diffX = x2.size()[2] - x1.size()[2]
diffY = x2.size()[3] - x1.size()[3]
x1 = nn.functional.pad(x1, (diffX // 2, diffX - diffX // 2,
diffY // 2, diffY - diffY // 2))
x = torch.cat([x2, x1], dim=1)
return self.conv(x)
class UNet(nn.Module):
def __init__(self, n_channels, n_classes):
super(UNet, self).__init__()
self.inc = DoubleConv(n_channels, 64)
self.down1 = nn.Sequential(nn.MaxPool2d(2), DoubleConv(64, 128))
self.down2 = nn.Sequential(nn.MaxPool2d(2), DoubleConv(128, 256))
self.down3 = nn.Sequential(nn.MaxPool2d(2), DoubleConv(256, 512))
self.down4 = nn.Sequential(nn.MaxPool2d(2), DoubleConv(512, 1024))
self.up1 = Up(1024, 512)
self.up2 = Up(512, 256)
self.up3 = Up(256, 128)
self.up4 = Up(128, 64)
self.outc = nn.Conv2d(64, n_classes, kernel_size=1)
def forward(self, x):
x1 = self.inc(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
x = self.up1(x5, x4)
x = self.up2(x, x3)
x = self.up3(x, x2)
x = self.up4(x, x1)
return self.outc(x)
```
在这个模型中,我们首先定义了一个双卷积层(DoubleConv)和一个上采样层(Up),然后将它们组合起来构建了一个UNet模型。UNet模型用于图像分割,将输入图像分割成多个部分,每个部分都对应着一个特定的标签。UNet模型的结构类似于自编码器,由一个下采样器和一个上采样器组成。下采样器用于提取特征,上采样器用于将特征图恢复到原始图像大小,并将特征图与下采样器对应的特征图进行特征融合。
接下来,我们可以定义一个函数来训练这个模型。
```python
def train(model, train_loader, val_loader, criterion, optimizer, n_epochs=10):
for epoch in range(n_epochs):
train_loss = 0
val_loss = 0
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item()
model.eval()
with torch.no_grad():
for batch_idx, (data, target) in enumerate(val_loader):
output = model(data)
loss = criterion(output, target)
val_loss += loss.item()
train_loss /= len(train_loader.dataset)
val_loss /= len(val_loader.dataset)
print('Epoch: {} Train Loss: {:.6f} Val Loss: {:.6f}'.format(
epoch + 1, train_loss, val_loss))
```
在训练函数中,我们首先循环训练数据集,计算损失并更新模型参数。然后我们循环验证数据集,计算损失并输出训练和验证损失。
接下来,我们可以定义一个函数来测试这个模型。
```python
def test(model, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = model(data)
test_loss += criterion(output, target).item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('Test Loss: {:.6f} Test Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
```
在测试函数中,我们首先将模型设置为评估模式,然后循环测试数据集,计算损失并输出测试精度。
最后,我们可以定义一个函数来进行训练和测试的循环。
```python
def train_and_test(model, train_loader, val_loader, test_loader, criterion, optimizer, n_epochs=10):
for epoch in range(n_epochs):
train(model, train_loader, val_loader, criterion, optimizer, n_epochs)
test(model, test_loader)
model = UNet(n_channels=3, n_classes=2)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
train_and_test(model, train_loader, val_loader, test_loader, criterion, optimizer, n_epochs=10)
```
在这个函数中,我们首先定义了一些超参数,包括训练轮数、优化器和损失函数。然后我们循环训练和测试模型,并在每个epoch结束后输出测试结果。
这就是一个简单的基于PyTorch的UNet模型。当然,这里只是给出了一个简单的实现,还可以进行更多的优化和改进,例如使用更复杂的模型、使用预训练模型等。
阅读全文