在飞浆平台使用vgg16实现图片识别代码
时间: 2024-05-05 15:17:21 浏览: 106
以下是在飞桨平台上使用VGG16实现图像识别的示例代码:
```python
import paddle
import paddle.fluid as fluid
# 定义VGG16网络结构
def vgg16(input):
def conv_block(input, num_filter, groups, num_channels=None):
return fluid.nets.img_conv_group(
input=input,
num_filters=num_filter,
conv_padding=1,
conv_num_filter_groups=groups,
conv_num_channels=num_channels,
pool_stride=2,
pool_padding=0,
pool_size=2,
pool_type='max')
conv1 = conv_block(input, 64, 1)
conv2 = conv_block(conv1, 128, 2)
conv3 = conv_block(conv2, 256, 4)
conv4 = conv_block(conv3, 512, 8)
conv5 = conv_block(conv4, 512, 8)
fc1 = fluid.layers.fc(input=conv5, size=4096, act='relu')
fc2 = fluid.layers.fc(input=fc1, size=4096, act='relu')
fc3 = fluid.layers.fc(input=fc2, size=1000, act='softmax')
return fc3
# 定义输入层
input_shape = [None, 3, 224, 224]
input = fluid.layers.data(name='input', shape=input_shape, dtype='float32')
# 定义VGG16网络模型
output = vgg16(input)
# 定义损失函数和优化器
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
cost = fluid.layers.cross_entropy(input=output, label=label)
avg_cost = fluid.layers.mean(cost)
optimizer = fluid.optimizer.AdamOptimizer(learning_rate=0.001)
optimizer.minimize(avg_cost)
# 定义预测程序
test_program = fluid.default_main_program().clone(for_test=True)
predict = fluid.layers.argmax(output, axis=1)
# 定义训练和测试数据读取器
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.flowers.train(), buf_size=100),
batch_size=32)
test_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.flowers.test(), buf_size=100),
batch_size=32)
# 定义执行器
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
# 开始训练
for pass_id in range(10):
# 训练
for batch_id, data in enumerate(train_reader()):
train_cost, _ = exe.run(
program=fluid.default_main_program(),
feed={
'input': fluid.dygraph.to_variable(
[x[0] for x in data]),
'label': fluid.dygraph.to_variable(
[x[1] for x in data])
},
fetch_list=[avg_cost])
if batch_id % 10 == 0:
print("Pass %d, Batch %d, Cost %f" %
(pass_id, batch_id, train_cost[0]))
# 测试
test_accs = []
test_costs = []
for batch_id, data in enumerate(test_reader()):
test_cost, test_acc = exe.run(
program=test_program,
feed={
'input': fluid.dygraph.to_variable(
[x[0] for x in data]),
'label': fluid.dygraph.to_variable(
[x[1] for x in data])
},
fetch_list=[avg_cost, predict])
test_accs.append(test_acc)
test_costs.append(test_cost)
test_acc = sum(test_accs) / len(test_accs)
test_cost = sum(test_costs) / len(test_costs)
print("Pass %d, Test Cost %f, Test Acc %f" %
(pass_id, test_cost[0], test_acc[0]))
```
在训练和测试数据读取器中,我们使用了PaddlePaddle自带的鲜花分类数据集。如果需要使用其他数据集进行训练,可以自己编写数据读取器。
在以上代码中,我们使用了fluid.dygraph.to_variable()函数将numpy数组转换为飞桨可识别的张量,使用exe.run()函数执行训练和测试程序。最后,我们输出了每个pass的训练损失和测试准确率。
阅读全文