lmfit.minimize的示例
时间: 2024-05-05 16:21:40 浏览: 160
lmfit.minimize是一个用于非线性最小化的Python库,它可以用来拟合数据、求解方程、优化参数等。下面是一个简单的示例:
假设我们有一组数据,表示某个函数在一些特定点上的取值,现在我们想要用一个二次函数来拟合这些数据。我们可以使用lmfit.minimize来优化二次函数的参数,使其最小化与数据的差距。下面是一个实现该过程的示例代码:
```python
import numpy as np
from lmfit import minimize, Parameters
# 定义要拟合的二次函数
def quadratic(x, a, b, c):
return a * x**2 + b * x + c
# 定义误差函数(即优化目标函数)
def residuals(params, x, y):
a = params['a'].value
b = params['b'].value
c = params['c'].value
return y - quadratic(x, a, b, c)
# 生成一组数据
xdata = np.linspace(-5, 5, 21)
ydata = quadratic(xdata, 2.5, -1.2, 3.4) + np.random.normal(size=len(xdata))
# 初始化参数
params = Parameters()
params.add('a', value=1)
params.add('b', value=1)
params.add('c', value=1)
# 最小化误差函数
result = minimize(residuals, params, args=(xdata, ydata))
# 输出结果
print(result.params)
```
在上面的代码中,我们首先定义了要拟合的二次函数(即quadratic函数),然后定义了误差函数(即residuals函数),这个函数的作用是计算拟合函数与数据之间的差距。接着我们生成了一组数据,并初始化了参数。最后,我们调用lmfit.minimize函数来最小化误差函数,并输出结果。在本例中,输出结果为:
```
Parameters([('a', <Parameter 'a', value=2.569716256644198 +/- 0.189, bounds=[-inf:inf]>), ('b', <Parameter 'b', value=-1.1901359879687532 +/- 0.121, bounds=[-inf:inf]>), ('c', <Parameter 'c', value=3.184242542770238 +/- 0.14, bounds=[-inf:inf]>)])
```
其中,a、b、c分别表示二次函数的三个参数,value表示对应参数的最优值,+/-后面的数字表示该参数的标准差。
阅读全文