c:\users\dongwj13\appdata\local\programs\python\python38\lib\site-packages\pandas\core\dtypes\cast.py:883: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray. element = np.asarray(element)什么意思
时间: 2023-07-21 11:54:16 浏览: 130
这是一个警告信息,意思是从不规则嵌套序列(即包含不同长度或形状的列表、元组或ndarray的列表或元组)中创建ndarray已经被弃用了。如果您想要这样做,您必须在创建ndarray时指定'dtype = object'。这个警告通常发生在使用pandas的to_numpy()方法将DataFrame或Series转换为ndarray时,其中包含不规则嵌套序列。建议在使用to_numpy()方法时,检查数据的完整性和一致性,确保所有的序列都具有相同的长度和形状,以避免该警告的出现。
相关问题
Traceback (most recent call last): File "C:\Users\admin\AppData\Local\Programs\Python\Python310\2.py", line 12, in <module> df.to_excel(writer,sheet_name=1,index=False) File "C:\Users\admin\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\core\generic.py", line 2252, in to_excel formatter.write( File "C:\Users\admin\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\io\formats\excel.py", line 940, in write writer._write_cells( File "C:\Users\admin\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\io\excel\_openpyxl.py", line 477, in _write_cells wks.title = sheet_name File "C:\Users\admin\AppData\Local\Programs\Python\Python310\lib\site-packages\openpyxl\workbook\child.py", line 90, in title m = INVALID_TITLE_REGEX.search(value) TypeError: expected string or bytes-like object
这个错误通常是由于 sheet_name 参数的类型不正确导致的。请确保 sheet_name 参数是字符串类型,而不是整数或其他类型。你可以尝试将 sheet_name 改为字符串类型,例如:
```
df.to_excel(writer, sheet_name='Sheet1', index=False)
```
如果问题仍然存在,请检查你的数据框中是否包含任何非字符串类型的列。如果有,请将它们转换为字符串类型,例如:
```
df['column_name'] = df['column_name'].astype(str)
```
Traceback (most recent call last): File "C:/Users/cfmoto/AppData/Local/Programs/Python/Python39/read_file.py", line 26, in <module> df3000 = df1.loc[(df1['SPEED']>2900)&(df1['SPEED']<3400),'ALPHA','Torque_engine'] File "C:\Users\cfmoto\AppData\Local\Programs\Python\Python39\lib\site-packages\pandas\core\indexing.py", line 925, in __getitem__ return self._getitem_tuple(key) File "C:\Users\cfmoto\AppData\Local\Programs\Python\Python39\lib\site-packages\pandas\core\indexing.py", line 1103, in _getitem_tuple self._has_valid_tuple(tup) File "C:\Users\cfmoto\AppData\Local\Programs\Python\Python39\lib\site-packages\pandas\core\indexing.py", line 751, in _has_valid_tuple self._validate_key_length(key) File "C:\Users\cfmoto\AppData\Local\Programs\Python\Python39\lib\site-packages\pandas\core\indexing.py", line 792, in _validate_key_length raise IndexingError("Too many indexers") pandas.core.indexing.IndexingError: Too many indexers
这个错误是因为在 Pandas 的 loc[] 方法中,你传递的参数数量超过了预期。在这个例子中,应该只传递一个参数,即一个布尔数组来筛选行,但是你传递了三个参数 'ALPHA'、'Torque_engine' 和一个布尔数组,因此出现了 "Too many indexers" 的错误。要解决这个问题,只需要将 'ALPHA' 和 'Torque_engine' 放到一个列表中作为第二个参数传递即可,如下所示:
```python
df3000 = df1.loc[(df1['SPEED'] > 2900) & (df1['SPEED'] < 3400), ['ALPHA', 'Torque_engine']]
```
这样就可以成功地选取符合条件的行,并且只选择 'ALPHA' 和 'Torque_engine' 两列的数据了。
阅读全文