[MSE, RMSE, MBE, MAE,MAPE ] =MSE_RMSE_MBE_MAE(output_test,y_pred);
时间: 2024-02-12 22:03:26 浏览: 138
Errors.zip_MSE误差_error_tieypf_回归模型_误差计算、
这是一段 MATLAB 代码,用于计算回归模型的性能指标。其中,output_test 是测试集的真实输出值,y_pred 是回归模型的预测输出值。代码中的 MSE、RMSE、MBE、MAE 和 MAPE 分别代表均方误差、均方根误差、平均偏差、平均绝对误差和平均绝对百分比误差,它们是回归模型评估中常用的指标。
具体解释如下:
- MSE(Mean Squared Error,均方误差):是预测值误差的平方和的平均值,用于评估预测值和真实值之间的接近程度,MSE 越小表示预测结果越接近真实值。
- RMSE(Root Mean Squared Error,均方根误差):是 MSE 的平方根,用于度量预测值和真实值之间的差异,RMSE 越小表示预测结果越准确。
- MBE(Mean Bias Error,平均偏差):是预测值误差的平均值,用于评估预测值和真实值之间的偏差,MBE 越接近 0 表示预测结果越准确。
- MAE(Mean Absolute Error,平均绝对误差):是预测值误差的绝对值的平均值,用于评估预测值和真实值之间的偏差,MAE 越小表示预测结果越准确。
- MAPE(Mean Absolute Percentage Error,平均绝对百分比误差):是预测值误差的绝对值除以真实值再取平均值后乘以 100%,用于评估预测值和真实值之间的相对误差,MAPE 越小表示预测结果越准确。
阅读全文