CNN-LSTM分类模型matlab代码
时间: 2023-09-30 15:05:35 浏览: 109
基于卷积神经网络-长短期记忆网络(CNN-LSTM)分类预测,matlab代码,要求2019及以上版本 多特征输入单输出的二
以下是一个简单的CNN-LSTM分类模型的Matlab代码示例:
```matlab
% 加载数据集
load('data.mat')
% 定义神经网络模型
inputSize = size(XTrain{1});
numClasses = numel(categories(YTrain));
layers = [
sequenceInputLayer(inputSize(1:2),'Name','input')
convolution2dLayer(3,16,'Padding','same','Name','conv1')
batchNormalizationLayer('Name','BN1')
reluLayer('Name','relu1')
maxPooling2dLayer(2,'Stride',2,'Name','pool1')
convolution2dLayer(3,32,'Padding','same','Name','conv2')
batchNormalizationLayer('Name','BN2')
reluLayer('Name','relu2')
maxPooling2dLayer(2,'Stride',2,'Name','pool2')
lstmLayer(100,'Name','lstm')
dropoutLayer(0.2,'Name','dropout')
fullyConnectedLayer(numClasses,'Name','fc')
softmaxLayer('Name','softmax')
classificationLayer('Name','classification')];
% 设置训练参数
options = trainingOptions('adam', ...
'InitialLearnRate', 1e-3, ...
'MaxEpochs', 50, ...
'MiniBatchSize', 64, ...
'Shuffle','every-epoch', ...
'Verbose',false, ...
'Plots','training-progress');
% 训练模型
net = trainNetwork(XTrain,YTrain,layers,options);
% 测试模型
YPred = classify(net,XTest);
accuracy = sum(YPred == YTest)/numel(YTest);
fprintf('测试集准确率为 %.2f%%\n',accuracy*100);
```
以上代码中,`data.mat`是一个加载了训练集和测试集数据的MATLAB数据文件,包含`XTrain`、`YTrain`、`XTest`和`YTest`四个变量。模型采用了类似于VGG网络的卷积神经网络(CNN)和长短时记忆网络(LSTM)来提取特征和序列建模,并以softmax层进行分类。训练过程采用了Adam优化器,最大训练轮数为50,批量大小为64。最终输出测试集的准确率。
请注意,这只是一个简单的示例,您需要根据您的具体问题和数据集进行相应的修改和调整。
阅读全文