ValueError Traceback (most recent call last) Cell In[12], line 31 29 a11 = (B2[0, 2] - B2[0, 1]) / 500 30 for i2 in np.arange(B2[0, 1], B2[0, 2] + a11, a11): ---> 31 f = interp1d(B2[0, :], B2[1, :], kind='cubic') 32 a12 = f(i2) 33 a13 = a12 File ~\AppData\Roaming\Python\Python39\site-packages\scipy\interpolate\_interpolate.py:616, in interp1d.__init__(***failed resolving arguments***) 613 yy = np.ones_like(self._y) 614 rewrite_nan = True --> 616 self._spline = make_interp_spline(xx, yy, k=order, 617 check_finite=False) 618 if rewrite_nan: 619 self._call = self.__class__._call_nan_spline File ~\AppData\Roaming\Python\Python39\site-packages\scipy\interpolate\_bsplines.py:1368, in make_interp_spline(x, y, k, t, bc_type, axis, check_finite) 1365 nt = t.size - k - 1 1367 if nt - n != nleft + nright: -> 1368 raise ValueError("The number of derivatives at boundaries does not " 1369 "match: expected %s, got %s+%s" % (nt-n, nleft, nright)) 1371 # bail out if the `y` array is zero-sized 1372 if y.size == 0: ValueError: The number of derivatives at boundaries does not match: expected 1, got 0+0该怎么修改。写出代码
时间: 2023-11-22 15:54:29 浏览: 128
这个错误通常是由于插值函数的输入数据不够完整导致的。可以尝试增加输入数据或者调整插值方式来解决问题。以下是可能的修改方式:
1. 增加输入数据:检查一下 `B2` 数组中的数据是否足够完整,如果不够完整可以尝试增加数据。
2. 调整插值方式:将 `kind` 参数改为其他插值方式,例如线性插值(`kind='linear'`)或多项式插值(`kind='polynomial'`)等。
下面是代码示例:
```python
import numpy as np
from scipy.interpolate import interp1d
# 输入数据
B2 = np.array([[0, 100, 200], [0, 1, 2]])
# 计算步长
a11 = (B2[0, 2] - B2[0, 1]) / 500
# 插值计算
for i2 in np.arange(B2[0, 1], B2[0, 2] + a11, a11):
f = interp1d(B2[0, :], B2[1, :], kind='linear') # 将插值方式改为线性插值
a12 = f(i2)
a13 = a12
```
相关问题
ValueError Traceback (most recent call last) Cell In[31], line 31 29 a11 = (B2[0, 2] - B2[0, 1]) / 500 30 for i2 in np.arange(B2[0, 1], B2[0, 2] + a11, a11): ---> 31 f = interpolate.interp1d(B2[0, :], B2[1, :], kind='cubic') 32 a12 = f(i2) 33 a13 = a12 File ~\AppData\Roaming\Python\Python39\site-packages\scipy\interpolate\_interpolate.py:616, in interp1d.__init__(***failed resolving arguments***) 613 yy = np.ones_like(self._y) 614 rewrite_nan = True --> 616 self._spline = make_interp_spline(xx, yy, k=order, 617 check_finite=False) 618 if rewrite_nan: 619 self._call = self.__class__._call_nan_spline File ~\AppData\Roaming\Python\Python39\site-packages\scipy\interpolate\_bsplines.py:1368, in make_interp_spline(x, y, k, t, bc_type, axis, check_finite) 1365 nt = t.size - k - 1 1367 if nt - n != nleft + nright: -> 1368 raise ValueError("The number of derivatives at boundaries does not " 1369 "match: expected %s, got %s+%s" % (nt-n, nleft, nright)) 1371 # bail out if the `y` array is zero-sized 1372 if y.size == 0: ValueError: The number of derivatives at boundaries does not match: expected 1, got 0+0怎么修改,写出代码
这个错误通常是由于输入的数据不满足插值条件引起的。具体来说,是在使用 `interpolate.interp1d()` 函数时,传入的数据不符合要求导数值的约束条件。
为了解决这个问题,你可以尝试以下几种方法:
1. 检查输入的数据是否满足插值条件。比如,对于三次样条插值,要求在插值区间的两个端点处至少有一个一阶导数值已知,否则会出现上述错误。如果数据不满足这个条件,你需要对数据进行预处理或者选择其他的插值方法。
2. 尝试使用其他的插值方法,比如线性插值、二次样条插值等。不同的插值方法有不同的要求,可能会更加适合你的数据。
下面是一个示例代码,展示如何使用二次样条插值来避免这个错误:
```python
import numpy as np
from scipy import interpolate
# 生成一些示例数据
x = np.array([0, 1, 2, 3, 4])
y = np.array([0, 1, 4, 9, 16])
# 定义插值函数
f = interpolate.interp1d(x, y, kind='quadratic')
# 在新的区间进行插值
x_new = np.linspace(1, 3, num=10, endpoint=True)
y_new = f(x_new)
print(y_new)
```
在上面的代码中,我们使用了二次样条插值来对 `x` 和 `y` 数组进行插值。由于二次样条插值只需要在插值区间的端点处知道一阶导数的值,因此可以避免上述错误。如果你仍然需要使用三次样条插值,可以在输入数据时确保满足插值条件,或者尝试使用其他的插值方法。
ValueError Traceback (most recent call last) Cell In[13], line 31 29 a11 = (B2[0, 2] - B2[0, 1]) / 500 30 for i2 in np.arange(B2[0, 1], B2[0, 2] + a11, a11): ---> 31 f = interp1d(B2[0, :], B2[1, :], kind='cubic') 32 a12 = f(i2) 33 a13 = a12 File ~\AppData\Roaming\Python\Python39\site-packages\scipy\interpolate\_interpolate.py:616, in interp1d.__init__(***failed resolving arguments***) 613 yy = np.ones_like(self._y) 614 rewrite_nan = True --> 616 self._spline = make_interp_spline(xx, yy, k=order, 617 check_finite=False) 618 if rewrite_nan: 619 self._call = self.__class__._call_nan_spline File ~\AppData\Roaming\Python\Python39\site-packages\scipy\interpolate\_bsplines.py:1368, in make_interp_spline(x, y, k, t, bc_type, axis, check_finite) 1365 nt = t.size - k - 1 1367 if nt - n != nleft + nright: -> 1368 raise ValueError("The number of derivatives at boundaries does not " 1369 "match: expected %s, got %s+%s" % (nt-n, nleft, nright)) 1371 # bail out if the `y` array is zero-sized 1372 if y.size == 0: ValueError: The number of derivatives at boundaries does not match: expected 1, got 0+0该怎么修改,写出代码
这个错误通常是由于边界条件(bc_type)设置不正确导致的。对于cubic插值,边界条件应该至少为一阶导数,即bc_type=(1, 0)或bc_type=(0, 1)。
你可以尝试将interp1d函数中的bc_type参数设置为(1, 0),并检查一下输入的x和y是否符合要求(如是否有重复的x值)。
下面是修改后的代码示例:
```
from scipy.interpolate import interp1d, make_interp_spline
import numpy as np
# 生成测试数据
x = np.array([0, 1, 2, 3, 4])
y = np.array([0, 1, 4, 9, 16])
# 计算插值
a11 = (x[2] - x[1]) / 500
for i2 in np.arange(x[1], x[2] + a11, a11):
f = interp1d(x, y, kind='cubic', bc_type=(1, 0)) # 修改bc_type
a12 = f(i2)
a13 = a12
```
注意:这只是一个示例代码,具体的修改方法需要根据你的数据和需求进行调整。
阅读全文